From Symbolic Constraint Automata to Promela

Hui Feng, Marcello Bonsangue, and Benjamin Lion

Areas of concern Formal protocols

Letter: element $s \in \Sigma$. Words: sequence $w \in \Sigma^*$. Formal languages: set of words $L \subseteq \Sigma^*$. Application: semantics of computer programs (termination).

Areas of concern Formal protocols

Letter: element $s \in \Sigma$. Words: sequence $w \in \Sigma^*$. Formal languages: set of words $L \subseteq \Sigma^*$. Application: semantics of computer programs (termination).

Letter: element $s \in \Sigma$. Run: stream $\sigma \in \Sigma^{\omega}$. Formal protocols: set of streams $L \subseteq \Sigma^{\omega}$ Application: semantics of computer networks (liveness properties). Protocol Design and verification

Compositional design:

- set of protocol primitives $p_1, ..., p_n \subseteq \Sigma^{\omega}$;
- composite protocol $P = p_1 \cap ... \cap p_n \subseteq \Sigma^{\omega}$.

Protocol Design and verification

Compositional design:

• set of protocol primitives $p_1, ..., p_n \subseteq \Sigma^{\omega}$;

• composite protocol $P = p_1 \cap ... \cap p_n \subseteq \Sigma^{\omega}$.

Verification:

- given a property $Prop \subseteq \Sigma^{\omega}$;
- check that $p_1 \cap ... \cap p_n \subseteq Prop$.

Protocol Design and verification

Compositional design:

• set of protocol primitives $p_1, ..., p_n \subseteq \Sigma^{\omega}$;

• composite protocol $P = p_1 \cap ... \cap p_n \subseteq \Sigma^{\omega}$.

Verification:

- given a property $Prop \subseteq \Sigma^{\omega}$;
- check that $p_1 \cap ... \cap p_n \subseteq Prop$.

References:

- Behaviors of Processes and Synchronized Systems of Processes (Nivat, 1982),
- A Co-inductive Calculus of Component Connector (Arbab and Rutten, 2002).

We present Reo, a connector-based language for compositional design of protocols.

We introduce a state-based specification for Reo connectors.

We provide a behavior preserving translation to Promela...

that we use to apply model checking with Spin.

Highlights

Highlights

We fix the alphabet to a set of port assignments, i.e., $\Sigma = \mathbb{P} \to \mathbb{D}_\star.$

A Reo primitive over a set of ports $P \subseteq \mathbb{P}$ denotes a subset $R(P) \subseteq \Sigma^{\omega}$ that may constrain ports in P only.

Composition is intersection, i.e., $R_1(P_1) \cap R_2(P_2)$ for two primitives $R_1(P_1)$ and $R_2(P_2)$.

Primitives of interaction

Sync channel Graphical and syntax

Set of behavior of the Sync(A, B) channel:

Fifo channel Graphical and syntax

Fifo channel Semantics

Set of behavior of the Fifo1(A, B, M) channel:

ſ	A	Μ	В		Α	М	Β`)
	d_1	*	*		d_1	*	*	l
J	*	d_1	*		*	d_1	d_1	l
)	*	d_1	*	, ,	d_2	*	*	ĺ
	*	d_1	d_1		*	d_2	*	
l							,	J

Primitives of interaction

Syntax:

- Ports are variables;
- Assignments are solutions to guarded commands;
- Channels are within a fragment of constraint automata

Symbolic Constraint Automata

We fix a set of terms:

 $t ::= d \mid x \mid f(\bar{t})$

with d data constants, x port and memory variables, and f function symbols.

A guarded action is a formula of the form:

$$P(\bar{x}) \to \bar{y} \coloneqq t$$

where

- *P* is a guard on \bar{x} ;
- \bar{x} is a vector of input ports or memory variables;
- \bar{y} is a vector of output ports or memory variables;
- free variables in *t* are either input or memory variables.

Symbolic Constraint Automata

Guarded Actions

The set of guarded actions over inputs I, outputs O, and memories V is written Act(I, O, V).

Examples:

- $(i \le v \rightarrow (o, v) := [i, i])$ is a guarded action in $Act(\{i\}, \{o\}, \{v\});$
- (i ≤ v → (o, i) := [i, o]) is not a guarded action in Act({i}, {o}, {v}), as i and o appear both on the left-hand side and on the right-hand side of the action, respectively.

Symbolic Constraint Automata Syntax and Semantics

A symbolic constraint automaton $A = (Q, q_0, I, O, V, \rightarrow)$ is such that

$$\blacksquare q_0 \in Q,$$

$$I \cap O = I \cap V = O \cap V = \emptyset,$$

 $\blacksquare \rightarrow \subseteq Q \times Act(I, O, V) \times Q.$

Symbolic Constraint Automata Syntax and Semantics

A symbolic constraint automaton $A = (Q, q_0, I, O, V, \rightarrow)$ is such that

 $\bullet q_0 \in Q,$

$$I \cap O = I \cap V = O \cap V = \emptyset,$$

$$\blacksquare \rightarrow \subseteq Q \times Act(I, O, V) \times Q.$$

The semantics $[\![A]\!]$ of A is the set of streams of assignments $\sigma \in (\mathbb{P} \to \mathbb{D}_{\star})^{\omega}$ where, for all $n \in \mathbb{N}$, there is a transition $q_n \xrightarrow{P(\bar{x}) \to \bar{y}:=t} q_{n+1}$ with:

- 1. the interpretation of the guard of $P(\bar{x})$ holds in σ_n ,
- 3. for all variables x not involved in the guarded action α , the value does not change, that is, $\sigma_{n+1}(x) = \sigma_n(x)$.

Alternator: a composite connector

Composition

Given two automata A_1 and A_2 , we form their product $A_1 \bowtie A_2$, such that $\llbracket A_1 \bowtie A_2 \rrbracket = \llbracket A_1 \rrbracket \cap \llbracket A_2 \rrbracket$.

Additionally, we assume that:

- variables in A_1 and A_2 are disjoint;
- every pair of guarded actions (a₁, a₂) in A₁ and A₂ synchronize on some inputs or some outputs but not both, i.e., I(a₁) ∩ O(a₂) ≠ Ø ⇒ I(a₂) ∩ O(a₁) = Ø.

We hide X in A with $\exists X.A$ where $\llbracket \exists X.A \rrbracket = \operatorname{pr}_{\mathbb{P} \setminus X} \llbracket A \rrbracket$.

Composite protocol

$$\begin{aligned} A_{alternator}(A, E, M, K) &= \\ \exists B, C, J, L, E, D, F, I, O, L, G, H, N, \\ A_{rep}(A, B, C) &\bowtie A_{fifo1}(J, L) &\bowtie A_{merger}(B, J, K) &\bowtie \\ A_{replicator}(E, D, F) &\bowtie A_{fifo1}(I, O) &\bowtie A_{merger}(G, I, L) &\bowtie \\ A_{replicator}(F, G, H) &\bowtie A_{sync}(H, N) &\bowtie A_{replicator}(M, N, O) \end{aligned}$$

Compilation to Promela

24/30

Hint for correctness

Logic	Promela		
port variables	<pre>typedef port { chan data = [1] of {Data}; chan sync = [1] of {int}; }</pre>		
$q_i \xrightarrow{P_i(ar{x}) o ar{y}:=t_i} q_{i+1}$	(guard_i /\ s=i) -> atomic{command_i /\ s= i+1		
$Protocol = (Q, q_0, I, O, V, \rightarrow)$	<pre>proctype Protocol(port p1;){ ∀p ∈ I ∪ O, Data _p; ∀v ∈ V, Data v; int state = 0; /* Guarded commands */ do :: transition_1 :: :: transition_n od}</pre>		

Properties

Properties	Temporal formulas			
n fires	len(p.data) != 0 && len(p.sync)!= 0 &&			
p₋mes	X(len(p.data)==0 $ len(p.sync) == 0$)			
p_silent	!(p_fires)			
m_full	len(m.data)!=0			
m_empty	len(m.data) == 0			
m fires	m_full && X(m_empty)) ∥			
III_III'es	m_empty && X(m_full)			
m_silent	!(m_fires)			
$p1_before_p2$	$(p1_fires \rightarrow \Diamond (p2_fires))$			
p1_then_p2	$(p1_fires \rightarrow X(silent U p2_fires))$			

Example

Software Defined Network

Example Verification in Spin

Temporal properties: $\phi_1 = \Box((A.data=1) \rightarrow \Diamond(B.data==1))$ $\phi_2 = \Box((A.data==2) \rightarrow (\Diamond(B.data==2)) \land \Diamond(C.data==2)))$

Example Verification in Spin

Temporal properties: $\phi_1 = \Box((A.data=1) \rightarrow \Diamond(B.data==1))$ $\phi_2 = \Box((A.data==2) \rightarrow (\Diamond(B.data==2)) \land \Diamond(C.data==2)))$

Results from Spin:

	Errors	Time	Depth	States	States	Transi
	found	usage	reached	stored	matched	-tions
ϕ_1	0	10.5s	479	214292	660445	1058424
ϕ_2	0	8.64s	479	152057	373096	767167

Conclusion

Theory: Description of compilation steps from Reo protocol into Promela programs.

<u>Practice</u>: Implementation of the theoretical results as extension of Reo compiler. Application on a case study.