From Symbolic Constraint
Automata to Promela

Hui Feng, Marcello Bonsangue, and Benjamin Lion

Areas of concern
Formal protocols

Letter: element s € X

Words: sequence w € ¥*.

Formal languages: set of words L C ¥*.

Application: semantics of computer programs (termination).

Areas of concern
Formal protocols

Letter: element s € X

Words: sequence w € ¥*.

Formal languages: set of words L C ¥*.

Application: semantics of computer programs (termination).

Letter: element s € X

Run: stream o € ¥%.

Formal protocols: set of streams L C ¥

Application: semantics of computer networks (liveness properties).

3/30

I Protocol Design and verification
Compositional design:

m set of protocol primitives ps, ..., pp C 2¥;

m composite protocol P =p;N...Np, CT ¥

4/30

I Protocol Design and verification

Compositional design:
m set of protocol primitives ps, ..., pp C 2¥;

m composite protocol P =p;N...Np, CT ¥

Verification:
m given a property Prop C ¥%;
m check that p;1 N...N p, C Prop.

5/30

I Protocol Design and verification

Compositional design:
m set of protocol primitives ps, ..., pp C 2¥;

m composite protocol P =p;N...Np, CT ¥

Verification:

m given a property Prop C ¥%;

m check that p;1 N...N p, C Prop.
References:

m Behaviors of Processes and Synchronized Systems of
Processes (Nivat, 1982),

m A Co-inductive Calculus of Component Connector (Arbab and
Rutten, 2002).

Plan

We present Reo, a connector-based language for compositional
design of protocols.

We introduce a state-based specification for Reo connectors.

We provide a behavior preserving translation to Promela...

that we use to apply model checking with Spin.

/30

Highlights

Reo specification

Compilation steps
v

Formal composition

Java Program
2

Promela Program

Java Runtime

LTL properties

Execution

8/30

Verification

Highlights

9/30

Reo specification

Compilation steps
v

Formal composition

Behavior preserving tr:

Promela Program

LTL properties

Verification

I Reo

10 /30

We fix the alphabet to a set of port assignments, i.e., ¥ =P — Dj.

A Reo primitive over a set of ports P C IP denotes a subset
R(P) C X¥ that may constrain ports in P only.

Composition is intersection, i.e., Ri(P1) N Ra2(P2) for two
primitives Ry(P1) and Rax(P2).

I Primitives of interaction

Fifol LossySync Merger

Syne Filter Replicator

11/30

Sync channel
Graphical and syntax

12/30

Sync
2A——— B
B=A

I Sync channel

Semantics

Set of behavior of the Sync(A, B) channel:

13 /30

Fifo channel
Graphical and syntax

14 /30

Fifol
M
— op
M =A

Fifo channel

Semantics

15 /30

Set of behavior of the Fifol(A, B, M) channel:

A|M| B
d1 * *
x | dy | *
di | *
d | di

Al M| B
d1 * *
x | dp | dh
d2 * *

*

d>

I Primitives of interaction

Fifol LossySync Merger
Sync Filter Replicator

=t =G

m Ports are variables;
m Assignments are solutions to guarded commands;
m Channels are within a fragment of constraint automata

Syntax:

16 /30

Symbolic Constraint Automata
Guarded Actions

We fix a set of terms:
tu=d| x| f(t)

with d data constants, x port and memory variables, and f
function symbols.
A guarded action is a formula of the form:

P(x) —»y:=t

where
m P is a guard on X;
B X is a vector of input ports or memory variables;
m ¥ is a vector of output ports or memory variables;
m free variables in t are either input or memory variables.

17 /30

Symbolic Constraint Automata
Guarded Actions

The set of guarded actions over inputs /, outputs O, and memories
V is written Act(/, O, V).

Examples:
m (i <v—(o,v):=][ii])is a guarded action in
Act({i}, {o}, {v});
m (i <v—(o,i):=1]io]) is not a guarded action in
Act({i},{o},{v}), as i and o appear both on the left-hand
side and on the right-hand side of the action, respectively.

18 /30

Syntax and Semantics

I Symbolic Constraint Automata

A symbolic constraint automaton A = (Q, qo, /, O, V,—) is such that
B g €Q,
B /NO0O=INV=0nV=40,
s —C Q x Act(l,0,V) x Q.

19/30

Symbolic Constraint Automata

Syntax and Semantics

A symbolic constraint automaton A = (Q, qo, /, O, V,—) is such that
B g €Q,
B /NO=INV=0nV=1,
s —C Q x Act(l,0,V) x Q.

The semantics [A] of A is the set of streams of assignements
o € (P — D,)* where, for all n € N, there is a transition

Gn PRyt Gnt+1 With:

1. the interpretation of the guard of P(x) holds in o,

2. for all output and memory variables x € O(a) U V() occuring in y,
the assignment 0,1 inherits the values assigned by the command
y =t evaluated with o;

3. for all variables x not involved in the guarded action «, the value
does not change, that is, 0,11(x) = o,(x).

20 /30

I Alternator: a composite connector

21/30

I Composition

22 /30

Given two automata A; and Aj, we form their product A; 1 Ay,
such that [[Al > A2]] = [[Al]] N [[A2]]

Additionally, we assume that:
m variables in A; and A are disjoint;

m every pair of guarded actions (a1, a2) in A; and A
synchronize on some inputs or some outputs but not both,
e, I(a1)NO(a2) #0 = I(a2) N O(ar) = 0.

We hide X in A with 3X.A where [3X.A] = prp\ x[A].

I Composite protocol

Aaiternator (A, E, M, K) =
iB,C,J,L,E,D,F,1,0,L,G,H, N,
Arep(A, B, C) < Asiro1(J, L) > Ame,ger(B, J,K)
Areplicator(E, D, F) > Afiro1(1, O) >4 Amerger (G, 1, L) <
Areplicator(F, G, H) >4 Async(H, N) > Areplicator(M, N, O)

23 /30

Compilation to Promela

24/30

Reo specification

Compilation steps
v

Formal composition

Promela Program

Verification

Hint for correctness

Logic

Promela

port variables

typedef port {
chan data = [1] of {Data};
chan sync = [1] of {int}; }

(x)

Pi(x —yi=t;
g ——— qgip1

(guard_i /\ s=i) ->
atomic{command_i /\ s= i+1}

Protocol = (Q, qo, 1,0, V,—)

25 /30

proctype Protocol(port pl; ...){
VYpelUO, Data _p;

Vv € V, Data v;

int state = 0;

/* Guarded commands */

do

:: transition_1

. transition_n
od}

I Properties

Properties Temporal formulas
o fires len(p.data) != 0 && len(p.sync)!=0 &&
B X(len(p.data)==0 ||/en(p.sync) == 0)
p_silent I(p_fires)
m_full len(m.data)!=0
m_empty len(m.data)==
. m_full && X(m_empty
m-fires m_empty &E@c X(mfu)ll)) H
m_silent I(m_fires)
pl_before_p2 (pl-fires — O (p2-fires))
pl_then_p2 (pl-fires — X(silent U p2_fires))

26 /30

Example
Software Defined Network

27 /30

Example

Verification in Spin

Po

o
P1 o\ addipt, %

Temporal properties:
¢ = O((A.data=1)— O (B.data==1))

¢> = O((A.data==2) — (O (B.data==2) AQ (C.data==2)))

o> ©

&

CU!;DO

A
Sely_o V|
Ry .

E R’ | -
AN

CutyP Om

28 /30

Verification in Spin

I Example

Temporal properties:
¢1 = 0((A.data=1)— O (B.data==1))

¢ = O((A.data==2) — ($(B.data==2) AQ(C.data==2)))
Results from Spin:

Errors | Time | Depth States States Transi
found | usage | reached | stored | matched -tions

01 0 10.5s 479 214292 | 660445 | 1058424

D2 0 8.64s 479 152057 | 373096 | 767167

29 /30

Conclusion

Theory: Description of compilation steps from Reo protocol into
Promela programs.

Practice: Implementation of the theoretical results as extension of
Reo compiler. Application on a case study.

30/30

	Introduction

