
From Symbolic Constraint
Automata to Promela

Hui Feng, Marcello Bonsangue, and Benjamin Lion

Areas of concern
Formal protocols

Letter: element s ∈ Σ.
Words: sequence w ∈ Σ∗.
Formal languages: set of words L ⊆ Σ∗.
Application: semantics of computer programs (termination).

Letter: element s ∈ Σ.
Run: stream σ ∈ Σω.
Formal protocols: set of streams L ⊆ Σω

Application: semantics of computer networks (liveness properties).

2 /30

Areas of concern
Formal protocols

Letter: element s ∈ Σ.
Words: sequence w ∈ Σ∗.
Formal languages: set of words L ⊆ Σ∗.
Application: semantics of computer programs (termination).

Letter: element s ∈ Σ.
Run: stream σ ∈ Σω.
Formal protocols: set of streams L ⊆ Σω

Application: semantics of computer networks (liveness properties).

3 /30

Protocol Design and verification

Compositional design:

set of protocol primitives p1, ..., pn ⊆ Σω;

composite protocol P = p1 ∩ ... ∩ pn ⊆ Σω.

Verification:

given a property Prop ⊆ Σω;

check that p1 ∩ ... ∩ pn ⊆ Prop.

References:

Behaviors of Processes and Synchronized Systems of
Processes (Nivat, 1982),

A Co-inductive Calculus of Component Connector (Arbab and
Rutten, 2002).

4 /30

Protocol Design and verification

Compositional design:

set of protocol primitives p1, ..., pn ⊆ Σω;

composite protocol P = p1 ∩ ... ∩ pn ⊆ Σω.

Verification:

given a property Prop ⊆ Σω;

check that p1 ∩ ... ∩ pn ⊆ Prop.

References:

Behaviors of Processes and Synchronized Systems of
Processes (Nivat, 1982),

A Co-inductive Calculus of Component Connector (Arbab and
Rutten, 2002).

5 /30

Protocol Design and verification

Compositional design:

set of protocol primitives p1, ..., pn ⊆ Σω;

composite protocol P = p1 ∩ ... ∩ pn ⊆ Σω.

Verification:

given a property Prop ⊆ Σω;

check that p1 ∩ ... ∩ pn ⊆ Prop.

References:

Behaviors of Processes and Synchronized Systems of
Processes (Nivat, 1982),

A Co-inductive Calculus of Component Connector (Arbab and
Rutten, 2002).

6 /30

Plan

We present Reo, a connector-based language for compositional
design of protocols.

We introduce a state-based specification for Reo connectors.

We provide a behavior preserving translation to Promela...

that we use to apply model checking with Spin.

7 /30

Highlights

Reo speci�cation

Java Program Promela Program

+

LTL properties

SPIN

Compilation steps

Veri�cationExecution

Java Runtime

JVM

Formal composition

�ehavior preserving translation

8 /30

Highlights

Reo speci�cation

Java Program Promela Program

+

LTL properties

SPIN

Compilation steps

Veri�cationExecution

Java Runtime

JVM

Formal composition

�ehavior preserving translation

+

9 /30

Reo

We fix the alphabet to a set of port assignments, i.e., Σ = P → D⋆.

A Reo primitive over a set of ports P ⊆ P denotes a subset
R(P) ⊆ Σω that may constrain ports in P only.

Composition is intersection, i.e., R1(P1) ∩ R2(P2) for two
primitives R1(P1) and R2(P2).

10 /30

Primitives of interaction

Sync

Fifo1 Merger

Replicator

LossySync

Filter

11 /30

Sync channel
Graphical and syntax

Sync

A B

0

B := A

12 /30

Sync channel
Semantics

Set of behavior of the Sync(A,B) channel:


A B

d1 d1
∗ ∗
d2 d2
... ...

, ... ,

A B

∗ ∗
∗ ∗
d1 d1
... ...



13 /30

Fifo channel
Graphical and syntax

Fifo1

A B

M

0 1

M := A

B := M

14 /30

Fifo channel
Semantics

Set of behavior of the Fifo1(A,B,M) channel:



A M B

d1 ∗ ∗
∗ d1 ∗
∗ d1 ∗
∗ d1 d1
...

, ... ,

A M B

d1 ∗ ∗
∗ d1 d1
d2 ∗ ∗
∗ d2 ∗
...



15 /30

Primitives of interaction

Sync

Fifo1 Merger

Replicator

LossySync

Filter

Syntax:

Ports are variables;

Assignments are solutions to guarded commands;

Channels are within a fragment of constraint automata

16 /30

Symbolic Constraint Automata
Guarded Actions

We fix a set of terms:

t ::= d | x | f (t̄)

with d data constants, x port and memory variables, and f
function symbols.
A guarded action is a formula of the form:

P(x̄) → ȳ := t

where

P is a guard on x̄ ;

x̄ is a vector of input ports or memory variables;

ȳ is a vector of output ports or memory variables;

free variables in t are either input or memory variables.

17 /30

Symbolic Constraint Automata
Guarded Actions

The set of guarded actions over inputs I , outputs O, and memories
V is written Act(I ,O,V).

Examples:

(i ≤ v → (o, v) := [i , i]) is a guarded action in
Act({i}, {o}, {v});
(i ≤ v → (o, i) := [i , o]) is not a guarded action in
Act({i}, {o}, {v}), as i and o appear both on the left-hand
side and on the right-hand side of the action, respectively.

18 /30

Symbolic Constraint Automata
Syntax and Semantics

A symbolic constraint automaton A = (Q, q0, I ,O,V ,→) is such that

q0 ∈ Q,

I ∩ O = I ∩ V = O ∩ V = ∅,
→⊆ Q × Act(I ,O,V)× Q.

The semantics JAK of A is the set of streams of assignements
σ ∈ (P → D⋆)

ω where, for all n ∈ N, there is a transition

qn
P(x̄)→ȳ :=t−−−−−−→ qn+1 with:

1. the interpretation of the guard of P(x̄) holds in σn,

2. for all output and memory variables x ∈ O(α)∪V (α) occuring in ȳ ,
the assignment σn+1 inherits the values assigned by the command
ȳ := t evaluated with σn;

3. for all variables x not involved in the guarded action α, the value
does not change, that is, σn+1(x) = σn(x).

19 /30

Symbolic Constraint Automata
Syntax and Semantics

A symbolic constraint automaton A = (Q, q0, I ,O,V ,→) is such that

q0 ∈ Q,

I ∩ O = I ∩ V = O ∩ V = ∅,
→⊆ Q × Act(I ,O,V)× Q.

The semantics JAK of A is the set of streams of assignements
σ ∈ (P → D⋆)

ω where, for all n ∈ N, there is a transition

qn
P(x̄)→ȳ :=t−−−−−−→ qn+1 with:

1. the interpretation of the guard of P(x̄) holds in σn,

2. for all output and memory variables x ∈ O(α)∪V (α) occuring in ȳ ,
the assignment σn+1 inherits the values assigned by the command
ȳ := t evaluated with σn;

3. for all variables x not involved in the guarded action α, the value
does not change, that is, σn+1(x) = σn(x).

20 /30

Alternator: a composite connector

21 /30

Composition

Given two automata A1 and A2, we form their product A1 ▷◁ A2,
such that JA1 ▷◁ A2K = JA1K ∩ JA2K.

Additionally, we assume that:

variables in A1 and A2 are disjoint;

every pair of guarded actions (a1, a2) in A1 and A2

synchronize on some inputs or some outputs but not both,
i.e., I (a1) ∩ O(a2) ̸= ∅ =⇒ I (a2) ∩ O(a1) = ∅.

We hide X in A with ∃X .A where J∃X .AK = prP\X JAK.

22 /30

Composite protocol

Aalternator (A,E ,M,K) =

∃B,C , J, L,E ,D,F , I ,O, L,G ,H,N,

Arep(A,B,C) ▷◁ Afifo1(J, L) ▷◁ Amerger (B, J,K) ▷◁

Areplicator (E ,D,F) ▷◁ Afifo1(I ,O) ▷◁ Amerger (G , I , L) ▷◁

Areplicator (F ,G ,H) ▷◁ Async(H,N) ▷◁ Areplicator (M,N,O)

23 /30

Compilation to Promela

Reo speci�cation

Java Program Promela Program

+

LTL properties

SPIN

Compilation steps

Veri�cationExecution

Java Runtime

JVM

Formal composition

�ehavior preserving translation

+

24 /30

Hint for correctness

Logic Promela

port variables
typedef port {

chan data = [1] of {Data};

chan sync = [1] of {int}; }

qi
Pi (x̄)→ȳ :=ti−−−−−−−−→ qi+1

(guard_i /\ s=i) ->

atomic{command_i /\ s= i+1}

Protocol = (Q, q0, I ,O,V ,→)

proctype Protocol(port p1; ...){

∀p ∈ I ∪ O, Data p;
∀v ∈ V , Data v;
int state = 0;

/* Guarded commands */

do

:: transition_1

:: ...

:: transition_n

od}

25 /30

Properties

Properties Temporal formulas

p fires
len(p.data) != 0 && len(p.sync)!=0 &&
X(len(p.data)==0 ∥len(p.sync) == 0)

p silent !(p fires)
m full len(m.data)!=0

m empty len(m.data)==0

m fires
m full && X(m empty)) ∥
m empty && X(m full)

m silent !(m fires)
p1 before p2 (p1 fires → ♢ (p2 fires))
p1 then p2 (p1 fires → X(silent U p2 fires))

26 /30

Example
Software Defined Network

P0

P1

Pn

A CB D E

H
F

R0

Q0

R1

Rm

Q1

Qm

GFlowMod

PktOut

RmvAddIpt1

AddIptn

Msg

FM

Mtc

Upd

Sel0

Cut

Sel1

Selm

Cut1

Cutmτ

27 /30

Example
Verification in Spin

P0

P1

Pn

A CB D E

H
F

R0

Q0

R1

Rm

Q1

Qm

GFlowMod

PktOut

RmvAddIpt1

AddIptn

Msg

FM

Mtc

Upd

Sel0

Cut

Sel1

Selm

Cut1

Cutmτ

Temporal properties:
ϕ1 = □((A.data=1)→ ♢(B.data==1))

ϕ2 = □((A.data==2)→(♢(B.data==2)∧♢(C.data==2)))

Results from Spin:

Errors
found

Time
usage

Depth
reached

States
stored

States
matched

Transi
-tions

ϕ1 0 10.5s 479 214292 660445 1058424
ϕ2 0 8.64s 479 152057 373096 767167

28 /30

Example
Verification in Spin

P0

P1

Pn

A CB D E

H
F

R0

Q0

R1

Rm

Q1

Qm

GFlowMod

PktOut

RmvAddIpt1

AddIptn

Msg

FM

Mtc

Upd

Sel0

Cut

Sel1

Selm

Cut1

Cutmτ

Temporal properties:
ϕ1 = □((A.data=1)→ ♢(B.data==1))

ϕ2 = □((A.data==2)→(♢(B.data==2)∧♢(C.data==2)))
Results from Spin:

Errors
found

Time
usage

Depth
reached

States
stored

States
matched

Transi
-tions

ϕ1 0 10.5s 479 214292 660445 1058424
ϕ2 0 8.64s 479 152057 373096 767167

29 /30

Conclusion

Theory: Description of compilation steps from Reo protocol into
Promela programs.

Practice: Implementation of the theoretical results as extension of
Reo compiler. Application on a case study.

30 /30

	Introduction

