A verified VCGen based on Dynamic Logic:
an exercise in meta-verification with Why3

Maria Jo3o Frade', Jorge Sousa Pinto?

Logics and Calculi for All
Dedicated to Luis Soares Barbosa on the occasion of his 60th Birthday

HASLab/INESC TEC & Universidade do Minho, Portugal

e . B
@)@ HasLab

Preliminaries

Context and Motivation

e General interest: the study of verification condition (VC) generation

e in the context of deductive verifiers based on program logics or
calculi

e following the typical architecture:

VCGen + automated prover/solver for FOL

e Aspects of VC generation have practical impact:

forward /backward strategy; size of VCs; SA form; ...

e Dynamic logic: a program logic

The KeY Project an

Quoting key-project.org:

The core feature of KeY is a theorem prover for Java Dynamic
Logic based on a sequent calculus

Does not follow the “typical architecture” ...

Deductive
Software Verification -
he KeY Book

From Theory to Practice

key-project.org

KeY’s DL in a nutshell (1)

Program-carrying modalities

[C]o: “every terminating execution of C results in a state that satisfies ¢”

[x :=elp = ole/x] [Gi Gle = [GlIGl¢
[if bthen C; else Colp = (b— [Gi]o) A (—b — [G]d)

oAb — [ClO
0 — [while b do C](0 A —b)

.. .extremely familiar from the standpoint of WP calculus and Hoare logic

KeY’s DL in a nutshell (2)

State Updates
Programs of a special form, essentially parallel assignments
[xi :=e ||| xn:=en]
e may be applied to expressions or formulas
e application is “rightmost wins" parallel variable substitution

o simplification rules required to handle formulas like [U]([U/] ¥), e.g.
U (ba = el I xo = ea] ¥) ~ U |[xa:=U(er)] [[x5 := U (en)] ¥

Updates were introduced as a device to handle object aliasing. Their
simplification is a forward propagation process resembling a strongest
postcondition computation

(But: free of existential quantifiers and not requiring SA form)

KeY’s DL in a nutshell (3)

State Updates in modern KeY

e are seen as separate entities, no longer as programs

e inference rules and update simplification promote symbolic execution

6 AU — UG Clo o AUYD) = (UG Cl¥
¢ — {U}[if b then C; else Co; Cly

=[x =2xx;y:=x]¢
¢ —{x:=2xx} [y :=x¢
6 x =25 x} ({y = x} ¥)
o= {x:=2xx || {x:=2xx} y:=x})
o= {x =2xx||y:=2xx})

Formalization of a DL-based Verifier

e Initial idea: to explore the use of \Why3 to formalize a simple
program logic and prove its properties

e Then wrote a VCGen for the logic. It includes a strategy for update
simplification and produces FOL proof obligations

e Verifying the VCGen: an exercise in meta-verification.
Quis custodiet ipsos custodes?

e Shows how dynamic logic with updates can serve as the basis for an
alternative verifier following the “typical architecture”

e It highlights distinctive aspects of Why3, in particular the rich
relationship between its logic and programming languages.

Formalization of a DL-based Verifier

e We define a fragment of JavaDL for While programs that we call
WhileDL

e We formalize its syntax and semantics in Why3

e We formalize an inference system for WhileDL and mechanically
prove its soundness and (a notion of) completeness

e We introduce a VCGen that produces FOL proof obligations, and
prove its soundness

e Our proofs use (just a few) proof transformations and (mostly)
external SMT solvers

e The verified VCGen can be extracted as an OCaml program

Why3 in a Nutshell

A logic language: FOL; algebraic types; inductive predicates; rich

logic library

WhyML programming language: functional with mutability

e Pure program functions may exist in both namespaces

Proof manager: external tool interaction; proof sessions;

transformations; smoke detection; hypotheses bissection

Verification based on contracts and clonable modules
(refinement VCs)

Why3 Example: (functional) Insertion Sort

module InsertionSort
use int.Int, list.List, list.Permut, list.SortedInt

val function insert (i: int) (I: list int) : list int
requires { sorted | }
ensures { sorted result }
ensures { permut result (Consil) }

let rec function iSort (I: list int) : list int
ensures { sorted result }
ensures { permut result | }

= match | with

| Nil —> Nil
| Cons h t —> insert h (iSort t)
end

end

Why3 Example: (functional) Insertion Sort

module InsertionSortRfn
use

let rec function insert (i: int) (I: list int) : list int
requires { sorted | }
ensures { sorted result }
ensures { permut result (Consil) }
= match | with
| Nil —> Cons i Nil
| Cons ht —> if i <= h then Cons i | else Cons h (insert i t)
end

clone InsertionSort with val insert (* will generate VCs! %)

goal itSorts : forall | :list int. let Is = iSort | in sorted Is /\ permut Is |
end

10

The WhileDL Dynamic Logic

Semantics

The interpretation of an update & € Upd in a given state is a state
transformer function U] : ¥ — (X — X):

[skipl(s)(s) = ¢

[<:=al(s)(s) = s'lx [al(s)]
Lalt6l(s)(s) = [Ll(s)([hal(s)(sh)
[un}ie](s)(s') = [Ll(ltal(s)(s)(s)

Expressions are interpreted in the usual way. For update aplications:
[{u}al(s) = [al([1(s)(s))

The usual interpretation of first-order formulas is extended with the two
following cases:

[} ol(s) =T iff [sl([/](s)(s)) =T
[[Clol(s) =T iff [#l(s") =T for s’ such that (C,s)|s

11

Semantics in Why3

We call a formula of the form ¢ — {U/} [C] 4 an update triple

predicate satisfies (s:state) (p:fmla) =

match p with |
| Fand pl p2 -> (satisfies s pl) /\ (satisfies s p2)
| Fsgqb ¢ p -> forall s’ :state. big_step s ¢ s’ -> satisfies s’ p
| Fupd u p -> satisfies (eval_upd s u s) p

end

predicate valid_fmla (p:fmla) = forall s:state. satisfies s p

predicate validUT (p:fmla) (u:upd) (c:stmt) (q:fmla) =
valid_fmla (Fimplies p (Fupd u (Fsgb c q)))

12

The WhileDL Calculus

¢ = {U|{U} x = a} [C] ¢
¢ = {Ut[x:=a; C]¢ (assign-seq)

oA {UYb > {ULG; Gy oA {U} b= {U G Gl
¢ — {U}[(if b then G else (o); G] ¢ (if-seq)

o —{UYO ONb— {skip}[Gi]0 6 A-b— {skip}[C]y
¢ — {U} [(wvhile b do {0} Ci); Gl (while-seq)

13

The WhileDL Calculus in Why3

inductive infUT fmla upd stmt fmla =

C...)

| infUT_assignseq: forall p:fmla, q:fmla, x:ident, e:expr, c:stmt, u:upd.
infUT p (Upar u (Uupd u (Uassign x e))) c q -> infUT p u (Sseq
(Sassign x e) ¢) q

| infUT_ifseq: forall p q:fmla, cl c2 c:stmt, b:bexpr, u:upd.
infUT (Fand p (Fupd u (Fembed b))) u (Sseq cl ¢) q ->
infUT (Fand p (Fupd u (Fnot (Fembed b)))) u (Sseq c2 c¢) q —->
infUT p u (Sseq (Sif b cl ¢2) ¢) g

| infUT_whileseq: forall p q:fmla, c cc:stmt, b:bexpr, inv ainv :fmla, u:upd.
valid_fmla (Fimplies p (Fupd u inv)) ->
infUT (Fand inv (Fembed b)) Uskip c¢ inv ->
infUT (Fand inv (Fnot (Fembed b))) Uskip cc q ->
infUT p u (Sseq (Swhile b ainv c) cc) q

14

WhileDL Soundness and Completeness

In Why3 inductive proofs can be written as lemma functions

let rec lemma infUT_sound_complete (c:stmt) =
ensures { forall p q :fmla, u :upd. validUT p u ¢ q <-> infUT puc q 1}
variant { size ¢ }

match c with

Sskip -> ()

Sassign _ _ -> O

Sif _ cl1 c2 -> infUT_sound_complete cl ; infUT_sound_complete c2
Swhile _ _ ¢ -> infUT_sound_complete c

Sseq Sskip ¢ -> infUT_sound_complete c
Sseq (Sassign _ _) ¢ -> infUT_sound_complete c

Sseq (Sif _ cl ¢2) ¢ -> infUT_sound_complete (Sseq cl c) ;
infUT_sound_complete (Sseq c2 c)
| Sseq (Swhile _ _ c1) ¢ -> infUT_sound_complete cl1 ; infUT_sound_complete ¢
| Sseq (Sseq cl c2) ¢ -> infUT_sound_complete (Sseq cl (Sseq c2 c))
end

15

The VC Generator

WhileDL Update Simplification

1.

28

© ® N o ;o & &

Loolix = aglloenlix = 3o} ¢~ Lo llskipll. .. lx == ap ...} ¢

Loollx = all...} t ~ {...[|skip[[...} ¢

{th} {tp} t ~ {Ug || {Ug } U} ¢
{U]| skip} ¢t ~ {U} ¢

{skip||UU} t ~ {U} t

{skip} t ~ ¢

{UYt ~ ¢

{U} (ap @ 32) ~ ({U} a1) @ ({U} 23)
{U}y —b~ —~{urp

{t} (by @ bp) ~ ({U} by) @ ({UU} bp)
{U =¢ ~ —{utr ¢

{U} (¢1 @ #2) ~ ({U} ¢1) @ ({U} 62)
{U} Vx. ¢ ~ Vx. {U} ¢

{U} 3Ix. ¢ ~ Ix. {U} ¢

{U} (x:=a) ~» x:={U}a

{U} skip ~» skip

{U} WUl Us) ~ ({U} t)]l ({U} Up)

{x:=a}x~ a

where t € AExp U BExp U Form U Upd

where t € AExp U BExp U Form U Upd and x & FV(t)
where t € AExp U BExp U Form U Upd
where t € AExp U BExp U Form U Upd
where t € AExp U BExp U Form U Upd
where t € AExp U BExp U Form U Upd
where t € Var U {true, false} U {..., —1,0,1, ...}
where @ € {+, %, —, =, <, >, <, >}

where @ € {A, V}

where @ € {A,V, =}

where x & FV(U)
where x & FV(U)

16

VCGen

Not a decision procedure for DL formulas in general! Takes an update
triple ¢ — {U}[C] 1 subject to “well-formedness” restrictions: C does
not contain expressions with updates, ¢, 1) do not contain statements . ..

~
let rec ghost function vcgen (p:fmla) (u:upd) (c:stmt) (q:fmla) : fset fmlaFOL

requires { stmt_freeF p /\ upd_freeF p /\ parUpd u /\ progIlnv c /\ stmt_freeF q }
ensures { valid_fmlas result -> validUT p u c q }
variant { size c }
= match c with
J €oood
| (Sseq (Sassign x e) c) -> vcgen p (concat u (applyU u (Uassign x e))) c q

| (Sseq (8if b cl c2) c) ->
union (vcgen (Fand p (applyF u (Fembed b))) u (Sseq cl c) q)
(vcgen (Fand p (applyF u (Fnot (Fembed b)))) u (Sseq c2 ¢) q)

| (Sseq (Swhile b inv c1) ¢) ->
addFOL (Fimplies p (applyF u inv))
(union (vcgen (Fand inv (Fembed b)) Uskip cl inv)
(vcgen (Fand inv (Fnot (Fembed b))) Uskip c q))
end

17

Wrapping Up

Conclusions

e Design of a VCGen producing first-order verification conditions —
proof of concept of how a DL-based verifier can be constructed
making used of standard first-order proof tools

e Non-trivial case study in program verification with Why3: a
functional program (VCGen + simplifier), with a complex spec

e Online repository also contains an execution version of the VCGen,
refining abstract type of finite sets by concrete mutable sets

e Extraction to OCaml code using Why3's program extraction facility
results in an actual executable, correct-by-construction VCGen

Why3 module files, proof sessions, proof summaries available from
https://github.com/jspdium/d1KeY.

18

https://github.com/jspdium/dlKeY

(Buenos

Aires, 2008)

19

	Preliminaries
	The WhileDL Dynamic Logic
	The VC Generator
	Wrapping Up

