Specification of Systems with Parameterised Events: An Institution-independent Approach

Rolf Hennicker & Alexander Knapp

LMU Munich & University of Augsburg

Dedicated to Luis Soares Barbosa

on the occasion of his 60th birthday

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some Bits of History

• 2005: First meeting of Luis and Rolf in Macau (FACS Wsh., *Formal Aspects of Component Software*)

<u>Common research interest:</u> Rigorous development of reactive component systems (formal models, logics, methods)

- 2010-2013: MONDRIAN project *Foundations for architectural design* (Luis coordinator, Rolf external consultant)
- 2015: First common publication: *Refinement in hybridised institutions*, with A. Madeira and M. Martins, FAoC journal

• 2016-2022: Continuation of our common research, with Alexander Knapp joining

Luis' Habilitation 2016

Development of Reactive Component Systems

We are interested in a stepwise refinement methodology $SP_0 \rightsquigarrow SP_1 \rightsquigarrow \cdots \rightsquigarrow SP_n$

For doing this we want a logic that is suitable for specifications of reactive component systems on various abstraction levels.

Our proposal: Dynamic Logic with Binders \mathcal{D}^{\downarrow} [ICTAC 2016] with A. Madeira and M. Martins

 \mathcal{D}^{\downarrow} -logic is suitable to express

- abstract specifications of requirements (safety, liveness, ...)
 - we take regular modalities from Dynamic Logic
- constructive specifications representing concrete processes
 - we take variables with binders from Hybrid Logic

Actions and Formulæ in \mathcal{D}^{\downarrow} -Logic

A signature is a finite set A of atomic actions.

Structured actions:

$$\alpha ::= \mathbf{a} \in \mathbf{A} \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$$

Formulæ:

$$\varphi ::= \text{true} \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \alpha \rangle \varphi$$

where α is a structured action over A

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Actions and Formulæ in \mathcal{D}^{\downarrow} -Logic

A signature is a finite set A of atomic actions.

Structured actions:

$$\alpha ::= \mathbf{a} \in \mathbf{A} \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$$

Formulæ:

$$\varphi ::= \operatorname{true} |\neg \varphi | \varphi \lor \varphi | \langle \alpha \rangle \varphi | z | \downarrow z. \varphi | @_z \varphi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where α is a structured action over *A* and *z* a state variable.

Actions and Formulæ in \mathcal{D}^{\downarrow} -Logic

A signature is a finite set A of atomic actions.

Structured actions:

$$\alpha ::= \mathbf{a} \in \mathbf{A} \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$$

Formulæ:

$$\varphi ::= \operatorname{true} | \neg \varphi | \varphi \lor \varphi | \langle \alpha \rangle \varphi | z | \downarrow z. \varphi | @_z \varphi$$

where α is a structured action over *A* and *z* a state variable.

Usual abbreviations, like $[\alpha]\varphi = \neg \langle \alpha \rangle \neg \varphi$

Sentences are formulæ without free variables.

Semantics of \mathcal{D}^{\downarrow} -logic

Models are reachable LTS with initial state:

$$\mathcal{M} = (W, w_0, (\stackrel{a}{\rightarrow} \subseteq W \times W)_{a \in A})$$

Satisfaction relation:

For sentences φ , $\mathcal{M} \models^{\mathcal{D}^{\downarrow}} \varphi$ if $\mathcal{M}, w_0 \models \varphi$

For any A-model $\mathcal{M} = (W, w_0, \rightarrow)$, $w \in W$ and $v : Z \rightarrow W$,

• $\mathcal{M}, w, v \models \langle \alpha \rangle \varphi$ if there exists $w \xrightarrow{\alpha} w'$ such that $\mathcal{M}, w', v \models \varphi$,

•
$$\mathcal{M}, w, v \models z$$
 if $w = v(z)$,

•
$$\mathcal{M}, w, v \models \downarrow z. \varphi$$
 if $\mathcal{M}, w, v \{z \mapsto w\} \models \varphi$,

•
$$\mathcal{M}, w, v \models @_z \varphi$$
 if $\mathcal{M}, v(z), v \models \varphi$,

Abstract and Concrete Specifications in \mathcal{D}^{\downarrow}

Example: Bounded Counter with two actions inc, reset

Abstract requirements specification:

- It is always possible to reset the counter: [(inc + reset)*](reset) true
- Whenever a reset has happened, two successive increments are possible:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
[(inc + reset)^*; reset] \langle inc; inc \rangle true
```

• Three increments in a row are never allowed: [(*inc* + *reset*)*; *inc*; *inc*] false

Abstract and Concrete Specifications in \mathcal{D}^{\downarrow}

Example: Bounded Counter with two actions inc, reset

Abstract requirements specification:

- It is always possible to reset the counter: [(*inc* + *reset*)*](*reset*) true
- Whenever a reset has happened, two successive increments are possible:

```
[(inc + reset)^*; reset] \langle inc; inc \rangle true
```

• Three increments in a row are never allowed: [(*inc* + *reset*)*; *inc*; *inc*; *inc*] false

Concrete specification:

Whenever a reset has happened, the counter is in its initial state:
↓ z₀.[(inc + reset)*; reset] z₀

\mathcal{D}^{\downarrow} -Logic is an Institution

In: [Barbosa, Hennicker, Madeira, and Martins; TCS 2018]

$\mathcal{D}^{\downarrow}\text{-}\mathsf{Logic}$ is an Institution

- In: [Barbosa, Hennicker, Madeira, and Martins; TCS 2018]
 - The notion of an **institution** [Goguen and Burstall 83] captures the essential ingredients that a logical system should provide when being used in formal software development.
 - Clear separation between syntax (signatures and sentences), semantics (mathematical models) and the relationship between the two in terms of satisfaction relations M ⊨_Σ φ.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$\mathcal{D}^{\downarrow}\text{-}\mathsf{Logic}$ is an Institution

In: [Barbosa, Hennicker, Madeira, and Martins; TCS 2018]

- The notion of an **institution** [Goguen and Burstall 83] captures the essential ingredients that a logical system should provide when being used in formal software development.
- Clear separation between syntax (signatures and sentences), semantics (mathematical models) and the relationship between the two in terms of satisfaction relations M ⊨_Σ φ.

An institution consists of

- a category Sig of signatures,
- a sentences functor $Sen: Sig \rightarrow Set$,
- a models functor $\mathit{Mod}: \mathit{Sig}^{\mathrm{op}} \to \mathrm{Cat},$ and

• a family of satisfaction relations $\models_{\Sigma} \subseteq |Mod(\Sigma)| \times Sen(\Sigma)$ such that the satisfaction condition holds, i.e. for all $\sigma : \Sigma \to \Sigma'$ in Sig, $M' \in Mod(\Sigma')$, and $\varphi \in Sen(\Sigma)$

 $Mod(\sigma)(M')\models_{\Sigma}\varphi\iff M'\models_{\Sigma'}\operatorname{Sen}(\sigma)(\varphi)$

Integrating Data: The Event/Data-Based Logic \mathcal{E}^{\downarrow}

Example: Bounded Counter

with two data attributes val : Nat, max : Nat

Abstract requirement:

Whenever the counter value is smaller than the upper bound an increment is possible:

 $[(\textit{inc} + \textit{reset})^*](\mathsf{val} < \mathsf{max}) \rightarrow \langle \textit{inc} / \! / \mathsf{val}' = \mathsf{val} + 1 \rangle \mathrm{true}$

Syntactic Concepts of \mathcal{E}^{\downarrow} -Logic

An event/data signature $\Sigma = (E, \Delta)$ consists of a finite set E of events and a finite set Δ of data attributes.

Event/data actions:

 $\alpha ::= \mathbf{e} / \psi_{\mathbf{2}\Delta} \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$

where $e \in E$ and $\psi_{2\Delta}$ is a "2-data state formula", i.e. a data state formula over $\Delta \cup \Delta'$.

Σ -formulæ:

 $\varphi ::= \operatorname{true} \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \alpha \rangle \varphi \mid z \mid \downarrow z. \varphi \mid \mathbb{Q}_{z} \varphi \mid \psi_{\Delta}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where ψ_{Δ} is a "data state formula" over Δ .

Syntactic Concepts of \mathcal{E}^{\downarrow} -Logic

An event/data signature $\Sigma = (E, \Delta)$ consists of a finite set E of events and a finite set Δ of data attributes.

Event/data actions:

 $\alpha ::= \boldsymbol{e} / \psi_{2\Delta} \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$

where $e \in E$ and $\psi_{2\Delta}$ is a "2-data state formula", i.e. a data state formula over $\Delta \cup \Delta'$.

Σ-formulæ:

 $\varphi ::= \operatorname{true} \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \alpha \rangle \varphi \mid z \mid \downarrow z. \varphi \mid \mathbf{0}_{z} \varphi \mid \psi_{\Delta}$

where ψ_{Δ} is a "data state formula" over Δ .

We can turn \mathcal{E}^{\downarrow} -logic into an institution

In: [Hennicker, Knapp, Madeira; FAoC 2021] Hybrid dynamic logic institutions for event/data-based systems

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat. Let φ be: $\forall x. (val + x \le max \rightarrow \langle inc(x) / val' = val + x \rangle true)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat. Let φ be: $\forall x . (val + x \le max \rightarrow \langle inc(x) / val' = val + x \rangle true)$ We want to express that φ holds in all reachable states.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat. Let φ be: $\forall x . (val + x \le max \rightarrow \langle inc(x) / val' = val + x \rangle true)$ We want to express that φ holds in all reachable states. Attempt:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $[(inc(x) + reset)^*]\varphi$

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat. Let φ be: $\forall x . (val + x \le max \rightarrow \langle inc(x) / / val' = val + x \rangle true)$ We want to express that φ holds in all reachable states. Attempt:

 $[(inc(x) + reset)^*]\varphi$ not good: value(s) of x unclear

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat. Let φ be: $\forall x . (val + x \le max \rightarrow \langle inc(x) / / val' = val + x \rangle true)$ We want to express that φ holds in all reachable states. Attempt:

$$\begin{split} & [(\mathit{inc}(x) + \mathit{reset})^*]\varphi & \text{not good: value(s) of x unclear} \\ & \forall x \, . \, [(\mathit{inc}(x) + \mathit{reset})^*]\varphi \end{split}$$

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat. Let φ be: $\forall x . (val + x \le max \rightarrow \langle inc(x) / val' = val + x \rangle true)$ We want to express that φ holds in all reachable states. Attempt:

$$\begin{split} &[(\mathit{inc}(x) + \mathit{reset})^*]\varphi & \text{not good: value(s) of x unclear} \\ &\forall x . [(\mathit{inc}(x) + \mathit{reset})^*]\varphi & \text{not good: always the same value for x} \\ & \text{in the iteration} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat. Let φ be: $\forall x . (val + x \le max \rightarrow \langle inc(x) / val' = val + x \rangle true)$ We want to express that φ holds in all reachable states. Attempt:

$$\begin{split} &[(inc(x) + reset)^*]\varphi & \text{not good: value(s) of x unclear} \\ &\forall x . [(inc(x) + reset)^*]\varphi & \text{not good: always the same value for x} \\ & \text{ in the iteration} \end{split}$$

Our solution:

 $[(inc(any x) + reset)^*]\varphi$

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat. Let φ be: $\forall x . (val + x \le max \rightarrow \langle inc(x) / val' = val + x \rangle true)$ We want to express that φ holds in all reachable states. Attempt:

$$\begin{split} &[(\mathit{inc}(x) + \mathit{reset})^*]\varphi & \text{not good: value(s) of x unclear} \\ &\forall x . [(\mathit{inc}(x) + \mathit{reset})^*]\varphi & \text{not good: always the same value for x} \\ & \text{in the iteration} \end{split}$$

Our solution:

 $[(inc(any x) + reset)^*]\varphi$

any \times expresses a non-deterministic choice for the value of \times

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

An event/data signature $\Sigma = (E, \delta)$ consists of

- a finite set *E* of **parameterised events** *e*(**any** *X*) where *X* is a finite list of variables and
- a data signature morphism $\delta: \Delta_0 \to \Delta$

An event/data signature $\Sigma = (E, \delta)$ consists of

- a finite set *E* of **parameterised events** *e*(**any** *X*) where *X* is a finite list of variables and
- a data signature morphism $\delta: \Delta_0 \to \Delta$

We assume given an arbitrary data institution which admits pushouts of signatures and amalgamations of models!

An event/data signature $\Sigma = (E, \delta)$ consists of

- a finite set *E* of **parameterised events** *e*(**any** *X*) where *X* is a finite list of variables and
- a data signature morphism $\delta: \Delta_0 \to \Delta$

We assume given an arbitrary data institution which admits pushouts of signatures and amalgamations of models!

The set of event/data actions over Σ is given by

 $\alpha ::= e(\operatorname{any} X) / \psi_{2\delta}(Y) \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where $\psi_{2\delta}(Y)$ is a "2-data state formula with variables in Y".

An event/data signature $\Sigma = (E, \delta)$ consists of

- a finite set *E* of **parameterised events** *e*(**any** *X*) where *X* is a finite list of variables and
- a data signature morphism $\delta: \Delta_0 \to \Delta$

We assume given an arbitrary data institution which admits pushouts of signatures and amalgamations of models!

The set of event/data actions over Σ is given by

 $\alpha ::= e(\operatorname{any} X) / \psi_{2\delta}(Y) \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$

where $\psi_{2\delta}(Y)$ is a "2-data state formula with variables in Y".

The set of Σ -formulæ is given by

 $\varphi ::= \operatorname{true} \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \alpha \rangle \varphi \mid \psi_{\delta}(X) \mid \forall x \, . \, \varphi$

where $\psi_{\delta}(X)$ is a "data state formula with variables in X".

Our Solution Reconsidered

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\begin{split} & [(\mathit{inc}(\mathsf{any}\,x) + \mathit{reset})^*]\varphi\\ & \text{is}\\ & [(\mathit{inc}(\mathsf{any}\,x) + \mathit{reset})^*]\\ & \forall x . (\mathsf{val} + x \leq \mathsf{max} \rightarrow \langle \mathit{inc}(x)/\!/\mathsf{val}' = \mathsf{val} + x\rangle \mathrm{true}) \end{split}$$

Our Solution Reconsidered

(ロ)、(型)、(E)、(E)、 E) の(()

$$\begin{split} & [(\mathit{inc}(\mathtt{any}\, x) + \mathit{reset})^*]\varphi\\ & \text{is}\\ & [(\mathit{inc}(\mathtt{any}\, x) + \mathit{reset})^*]\\ & \forall x \, . \, (\mathsf{val} + x \leq \mathsf{max} \rightarrow \langle \mathit{inc}(x)/\!/ \mathsf{val}' = \mathsf{val} + x \rangle \mathrm{true}) \end{split}$$

But inc(x)//... is not syntactically correct.

Our Solution Reconsidered

$$\begin{split} & [(\textit{inc}(\texttt{any} \times) + \textit{reset})^*]\varphi\\ & \text{is}\\ & [(\textit{inc}(\texttt{any} \times) + \textit{reset})^*]\\ & \forall x . (\texttt{val} + x \leq \texttt{max} \rightarrow \langle \textit{inc}(x) / \! / \texttt{val}' = \texttt{val} + x \rangle \texttt{true}) \end{split}$$

But inc(x)//... is not syntactically correct. Therefore we write

$$\begin{split} & [(\textit{inc}(\texttt{any} x) + \textit{reset})^*] \\ & \forall x \, . \, (val + x \leq max \rightarrow \langle \textit{inc}(\texttt{any} y) / \!\!/ y = x \wedge val' = val + x \rangle true) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Open Formulæ and Valuations (institution independent)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $\delta : \Delta_0 \to \Delta$ be a data signature morphism.

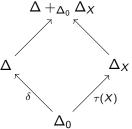
A variable over δ has a name, say x, and an associated type $\tau(x) : \Delta_0 \to \Delta_x$.

Open Formulæ and Valuations (institution independent)

Let $\delta : \Delta_0 \to \Delta$ be a data signature morphism.

A variable over δ has a name, say x, and an associated type $\tau(x) : \Delta_0 \to \Delta_x$.

An open δ -formula is a pair, written $\varphi(X)$, such that X is a finite set of variable names and φ is a data sentence over the pushout signature

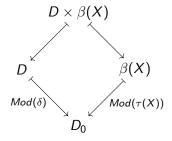


A valuation for the variables X is a function β which maps any $x \in X$ to a Δ_x -data model $\beta(x)$.

Satisfaction of Open Data Formulæ

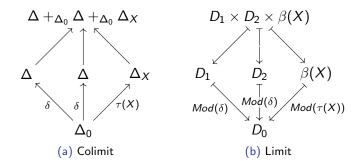
For $\delta : \Delta_0 \to \Delta$ we assume a fixed Δ_0 -model D_0 and we consider the class of Δ -models D whose reduct along δ is D_0 .

We define: $D, \beta \models_{\delta} \varphi(X)$ if $D \times \beta(X) \models_{\Delta + \Delta_0 \Delta_X} \varphi$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dealing with Open 2-Data State Formulæ



We define:

$$(D_1, D_2), \beta \models_{2\delta} \psi(X) \text{ if } D_1 \times D_2 \times \beta(X) \models_{\Delta + \Delta_0 \Delta + \Delta_0 \Delta_X} \psi$$

e.g. $\psi(\{x\}) \equiv (\operatorname{val}' = \operatorname{val} + x)$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Semantic Models in $\mathcal{E}_{p}^{\downarrow}$

Let $\Sigma = (E, \delta : \Delta_0 \rightarrow \Delta)$ be an event/data signature.

A configuration is a pair $\gamma = (ctrl, data)$ where ctrl is a control state and data is a data state formalised as a model over the data signature Δ (whose reduct along δ is D_0).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Semantic Models in $\mathcal{E}_{p}^{\downarrow}$

Let $\Sigma = (E, \delta : \Delta_0 \rightarrow \Delta)$ be an event/data signature.

A configuration is a pair $\gamma = (ctrl, data)$ where ctrl is a control state and data is a data state formalised as a model over the data signature Δ (whose reduct along δ is D_0).

A Σ -model is a labelled transition system $\mathcal{M} = (\Gamma, \gamma_0, \rightarrow)$ such that

- Γ is a set of configurations,
- $\gamma_0 \in \Gamma$ is the *initial configuration*,
- \rightarrow is a family of *transition relations* $\xrightarrow{e(\beta_X)} \subseteq \Gamma \times \Gamma$, one for each event $e(any X) \in E$ and each valuation β_X for X,
- all configurations in Γ are reachable from γ_0 via \rightarrow .

For any Σ -model \mathcal{M} , configuration $\gamma \in \Gamma$ and data variable valuation $\beta : \mathcal{X} \to Mod(\delta)$ "data models",

• $\mathcal{M}, \gamma, \beta \models \langle e(\operatorname{any} X) / \!\!/ \psi_{2\delta}(Y) \rangle \varphi$ if

there exists a valuation β_X for X and $\gamma \xrightarrow{e(\beta_X)} \gamma'$ such that $(data(\gamma), data(\gamma')), \beta\{X \mapsto \beta_X\} \models_{2\delta} \psi_{2\delta}(Y)$ and $\mathcal{M}, \gamma', \beta \models \varphi$,

For any Σ -model \mathcal{M} , configuration $\gamma \in \Gamma$ and data variable valuation $\beta : \mathcal{X} \to Mod(\delta)$ "data models",

•
$$\mathcal{M}, \gamma, \beta \models \langle e(\operatorname{any} X) / \! / \psi_{2\delta}(Y) \rangle \varphi$$
 if

there exists a valuation β_X for X and $\gamma \xrightarrow{e(\beta_X)} \gamma'$ such that $(data(\gamma), data(\gamma')), \beta\{X \mapsto \beta_X\} \models_{2\delta} \psi_{2\delta}(Y)$ and $\mathcal{M}, \gamma', \beta \models \varphi$,

A D N A 目 N A E N A E N A B N A C N

•
$$\mathcal{M}, \gamma, \beta \models \forall x . \varphi$$
 if
 $\mathcal{M}, \gamma, \hat{\beta} \models \varphi$ for all $\hat{\beta}$ with $\hat{\beta}(\hat{x}) = \beta(\hat{x})$ for all $\hat{x} \neq x$,

For sentences φ , $\mathcal{M} \models^{\mathcal{E}_{p}^{\downarrow}} \varphi$ if $\mathcal{M}, \gamma_{0} \models \varphi$

. . .

For any Σ -model \mathcal{M} , configuration $\gamma \in \Gamma$ and data variable valuation $\beta : \mathcal{X} \to Mod(\delta)$ "data models",

•
$$\mathcal{M}, \gamma, \beta \models \langle e(\operatorname{any} X) / \! / \psi_{2\delta}(Y) \rangle \varphi$$
 if

there exists a valuation β_X for X and $\gamma \xrightarrow{e(\beta_X)} \gamma'$ such that $(data(\gamma), data(\gamma')), \beta\{X \mapsto \beta_X\} \models_{2\delta} \psi_{2\delta}(Y)$ and $\mathcal{M}, \gamma', \beta \models \varphi$,

•
$$\mathcal{M}, \gamma, \beta \models \forall x . \varphi$$
 if
 $\mathcal{M}, \gamma, \hat{\beta} \models \varphi$ for all $\hat{\beta}$ with $\hat{\beta}(\hat{x}) = \beta(\hat{x})$ for all $\hat{x} \neq x$,

For sentences φ , $\mathcal{M} \models^{\mathcal{E}_{p}^{\downarrow}} \varphi$ if $\mathcal{M}, \gamma_{0} \models \varphi$

 $\mathcal{E}_{p}^{\downarrow}$ -logic is an institution!

For any Σ -model \mathcal{M} , configuration $\gamma \in \Gamma$ and data variable valuation $\beta : \mathcal{X} \to Mod(\delta)$ "data models",

•
$$\mathcal{M}, \gamma, \beta \models \langle e(\operatorname{any} X) / \!\!/ \psi_{2\delta}(Y) \rangle \varphi$$
 if

there exists a valuation β_X for X and $\gamma \xrightarrow{e(\beta_X)} \gamma'$ such that $(data(\gamma), data(\gamma')), \beta\{X \mapsto \beta_X\} \models_{2\delta} \psi_{2\delta}(Y)$ and $\mathcal{M}, \gamma', \beta \models \varphi$,

•
$$\mathcal{M}, \gamma, \beta \models \forall x . \varphi$$
 if
 $\mathcal{M}, \gamma, \hat{\beta} \models \varphi$ for all $\hat{\beta}$ with $\hat{\beta}(\hat{x}) = \beta(\hat{x})$ for all $\hat{x} \neq x$,

For sentences φ , $\mathcal{M} \models^{\mathcal{E}_{p}^{\downarrow}} \varphi$ if $\mathcal{M}, \gamma_{0} \models \varphi$

$\mathcal{E}_{p}^{\downarrow}$ -logic is an institution!

Related work: [Martins, Madeira, Diaconescu, Barbosa; CALCO 2011] Hybridization of institutions

Let us celebrate Luis!

With all our best wishes for many further happy and successful years!

