Specification of Systems with Parameterised
Events: An Institution-independent Approach

Rolf Hennicker & Alexander Knapp

LMU Munich & University of Augsburg

Dedicated to Luis Soares Barbosa

on the occasion of his 60th birthday

Some Bits of History

2005: First meeting of Luis and Rolf in Macau
(FACS Wsh., Formal Aspects of Component Software)

Common research interest: Rigorous development of reactive
component systems (formal models, logics, methods)

2010-2013: MONDRIAN project - Foundations for
architectural design (Luis coordinator, Rolf external
consultant)

2015: First common publication: Refinement in hybridised
institutions, with A. Madeira and M. Martins, FAoC journal

2016-2022: Continuation of our common research,
with Alexander Knapp joining

Luis’ Habilitation 2016

A':’ -

Development of Reactive Component Systems

We are interested in a stepwise refinement methodology
SPy ~» SPy ~~ -+ -~ SP),

For doing this we want a logic that is suitable for specifications of
reactive component systems on various abstraction levels.

Our proposal: Dynamic Logic with Binders D~
[ICTAC 2016] with A. Madeira and M. Martins

D'-logic is suitable to express

e abstract specifications of requirements (safety, liveness, ...)
® we take regular modalities from Dynamic Logic

® constructive specifications representing concrete processes
® we take variables with binders from Hybrid Logic

Actions and Formulae in D*-Logic

A signature is a finite set A of atomic actions.

Structured actions:

ar=acAlaalatalat

Formulae:
pu=true | ~p | oVl ({a)p

where « is a structured action over A

Actions and Formulae in D*-Logic

A signature is a finite set A of atomic actions.
Structured actions:

at=acAloalatala*
Formulae:

pu=true |~ |oVel{a)p|z]| lz.0]Cyp

where « is a structured action over A
and z a state variable.

Actions and Formulae in D*-Logic

A signature is a finite set A of atomic actions.
Structured actions:

at=acAloalatala*
Formulae:

pu=true |~ |oVel{a)p|z]| lz.0]Cyp

where « is a structured action over A
and z a state variable.

Usual abbreviations, like [a]p = —(a)—p

Sentences are formulae without free variables.

Semantics of D*-logic

Models are reachable LTS with initial state:
M = (W7 wo, (i> g W x W)aGA)

Satisfaction relation:

For sentences ¢, M I:Di pif Mwy = o

Satisfaction Relation in DY

For any A-model M = (W, ,wp,—), we Wandv:Z — W,
° M,w,v E (o) if

there exists w = w’ such that M, w’, v |= ¢,

Mow,v Ezif w=v(z),

Mow,viELz.pif M,w,v{z— w} =,

M,w,v EQ,pif M,v(z),v Ep,

Abstract and Concrete Specifications in D+

Example: Bounded Counter with two actions inc, reset
Abstract requirements specification:

® |t is always possible to reset the counter:

[(inc + reset)*|{reset) true

® Whenever a reset has happened, two successive increments are
possible:

[(inc + reset)*; reset](inc; inc) true

® Three increments in a row are never allowed:

[(inc + reset)*; inc; inc; inc] false

Abstract and Concrete Specifications in D+

Example: Bounded Counter with two actions inc, reset
Abstract requirements specification:

® |t is always possible to reset the counter:

[(inc + reset)*|{reset) true

® Whenever a reset has happened, two successive increments are
possible:

[(inc + reset)*; reset](inc; inc) true
® Three increments in a row are never allowed:
[(inc + reset)*; inc; inc; inc] false
Concrete specification:

® Whenever a reset has happened, the counter is in its initial state:

1 zp.[(inc + reset)*; reset] zg

D*-Logic is an Institution
In: [Barbosa, Hennicker, Madeira, and Martins; TCS 2018]

D*-Logic is an Institution
In: [Barbosa, Hennicker, Madeira, and Martins; TCS 2018]

® The notion of an institution [Goguen and Burstall 83] captures the
essential ingredients that a logical system should provide when
being used in formal software development.

® Clear separation between syntax (signatures and sentences),
semantics (mathematical models) and the relationship between the
two in terms of satisfaction relations M =5 .

D*-Logic is an Institution
In: [Barbosa, Hennicker, Madeira, and Martins; TCS 2018]

® The notion of an institution [Goguen and Burstall 83] captures the
essential ingredients that a logical system should provide when
being used in formal software development.

® Clear separation between syntax (signatures and sentences),
semantics (mathematical models) and the relationship between the
two in terms of satisfaction relations M =5 .

An institution consists of
® a category Sig of signatures,

® a sentences functor Sen : Sig — Set,

a models functor Mod : Sig®® — Cat, and
a family of satisfaction relations =5 C |Mod(X)| x Sen(X)

such that the satisfaction condition holds, i.e.
forallo: X — X' in Sig, M" € Mod(X'), and ¢ € Sen(X)
Mod(a)(M') [z ¢ <= M’ s Sen(o)()

Integrating Data: The Event/Data-Based Logic £+

Example: Bounded Counter

with two data attributes val : Nat, max : Nat

Abstract requirement:

Whenever the counter value is smaller than the upper bound an
increment is possible:

[(inc + reset)*](val < max) — (inc//val’ = val 4 1)true

Syntactic Concepts of £+-Logic

An event/data signature ¥ = (E, A) consists of a finite set E of
events and a finite set A of data attributes.

Event/data actions:
az=efflbp |asala+ala”

where e € E and v, is a “2-data state formula”,
i.e. a data state formula over A U A/.

> -formulae:

pu=true |~ |pVo|{a)p|z] Lz.¢|Qp|ia

where YA is a “data state formula” over A.

Syntactic Concepts of £+-Logic

An event/data signature ¥ = (E, A) consists of a finite set E of
events and a finite set A of data attributes.

Event/data actions:
az=efflbp |asala+ala”

where e € E and v, is a “2-data state formula”,
i.e. a data state formula over A U A/.

> -formulae:

pu=true |~ |pVo|{a)p|z] Lz.¢|Qp|ia

where YA is a “data state formula” over A.

We can turn £+-logic into an institution

In: [Hennicker, Knapp, Madeira; FAoC 2021]
Hybrid dynamic logic institutions for event/data-based systems

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter
Event with parameter: inc(x) where x is a variable of type Nat.

Let ¢ be: ¥x.(val +x < max — (inc(x)//val' = val 4+ x)true)

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter
Event with parameter: inc(x) where x is a variable of type Nat.
Let ¢ be: ¥x.(val +x < max — (inc(x)//val' = val 4+ x)true)

We want to express that ¢ holds in all reachable states.

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter
Event with parameter: inc(x) where x is a variable of type Nat.
Let ¢ be: ¥x.(val +x < max — (inc(x)//val' = val 4+ x)true)
We want to express that ¢ holds in all reachable states.
Attempt:

[(inc(x) + reset)*]p

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat.
Let ¢ be: ¥x.(val +x < max — (inc(x)//val' = val 4+ x)true)
We want to express that ¢ holds in all reachable states.

Attempt:

[(inc(x) + reset)*]p not good: value(s) of x unclear

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter
Event with parameter: inc(x) where x is a variable of type Nat.
Let ¢ be: ¥x.(val +x < max — (inc(x)//val' = val 4+ x)true)
We want to express that ¢ holds in all reachable states.
Attempt:

[(inc(x) + reset)*]p not good: value(s) of x unclear

Vx. [(inc(x) + reset)*]p

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat.
Let ¢ be: ¥x.(val +x < max — (inc(x)//val' = val 4+ x)true)
We want to express that ¢ holds in all reachable states.
Attempt:

[(inc(x) + reset)*]p not good: value(s) of x unclear

Vx. [(inc(x) + reset)*]¢ not good: always the same value for x
in the iteration

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter
Event with parameter: inc(x) where x is a variable of type Nat.
Let ¢ be: ¥x.(val +x < max — (inc(x)//val' = val 4+ x)true)
We want to express that ¢ holds in all reachable states.
Attempt:

[(inc(x) + reset)*]p not good: value(s) of x unclear

Vx. [(inc(x) + reset)*]¢ not good: always the same value for x
in the iteration
Our solution:

[(inc(any x) + reset)*]p

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter
Event with parameter: inc(x) where x is a variable of type Nat.
Let ¢ be: ¥x.(val +x < max — (inc(x)//val' = val 4+ x)true)
We want to express that ¢ holds in all reachable states.
Attempt:

[(inc(x) + reset)*]p not good: value(s) of x unclear

Vx. [(inc(x) + reset)*]¢ not good: always the same value for x
in the iteration
Our solution:
[(inc(any x) + reset)*]p
any x expresses a non-deterministic choice for the value of x

Structured Actions and Formulz in Sg—Logic

An event/data signature ¥ = (E, §) consists of

® a finite set E of parameterised events e(any X)
where X is a finite list of variables and
® 3 data signature morphism 6 : Ag — A

Structured Actions and Formulz in Sé—Logic

An event/data signature ¥ = (E, §) consists of
e a finite set E of parameterised events e(any X)
where X is a finite list of variables and
® 3 data signature morphism 6 : Ag — A

We assume given an arbitrary data institution which admits
pushouts of signatures and amalgamations of models!

Structured Actions and Formulz in €§—Logic

An event/data signature ¥ = (E, §) consists of
e a finite set E of parameterised events e(any X)
where X is a finite list of variables and
® 3 data signature morphism 6 : Ag — A

We assume given an arbitrary data institution which admits
pushouts of signatures and amalgamations of models!

The set of event/data actions over ¥ is given by
a==e(any X)Jis(Y) |l a+a|a®

where 95(Y) is a “2-data state formula with variables in Y.

Structured Actions and Formulz in Sé—Logic

An event/data signature ¥ = (E, §) consists of
e a finite set E of parameterised events e(any X)
where X is a finite list of variables and
® 3 data signature morphism 6 : Ag — A

We assume given an arbitrary data institution which admits
pushouts of signatures and amalgamations of models!

The set of event/data actions over ¥ is given by
a==e(any X)Jis(Y) |l a+a|a®

where 95(Y) is a “2-data state formula with variables in Y.

The set of > -formulz is given by

pu=true | ~p | Ve[{a)p | s(X)|Vx. ¢

where ¢5(X) is a “data state formula with variables in X".

Our Solution Reconsidered

_ [(inc(any x) + reset)*]p
is
[(inc(any x) + reset)*]
Vx. (val + x < max — (inc(x)//val’ = val 4 x)true)

Our Solution Reconsidered

[(inc(any x) + reset)*]p

[(inc(any x) + reset)*]
Vx. (val + x < max — (inc(x)//val’ = val 4 x)true)

But inc(x)//... is not syntactically correct.

Our Solution Reconsidered

[(inc(any x) + reset)*]p
[(inc(any x) + reset)*]
Vx. (val + x < max — (inc(x)//val’ = val 4 x)true)

But inc(x)//... is not syntactically correct.
Therefore we write
[(inc(any x) + reset)*]
Vx . (val +x < max — (inc(anyy)//ly = x A val’ = val + x)true)

Open Formula and Valuations (institution independent)

Let 0 : Ag — A be a data signature morphism.

A variable over ¢ has a name, say x, and an associated type
T(x) : Ag — Ax.

Open Formula and Valuations (institution independent)

Let 0 : Ag — A be a data signature morphism.
A variable over ¢ has a name, say x, and an associated type
T(x) : Ag — Ax.

An open o-formula is a pair, written ¢(X), such that X is a finite
set of variable names and ¢ is a data sentence over the pushout

signature
A +A, Ax

N\,
\/

A valuation for the variables X is a function 8 which maps any
x € X to a A,-data model B(x).

Satisfaction of Open Data Formula

For § : Ag — A we assume a fixed Ag-model Dy and we consider
the class of A-models D whose reduct along § is Dy.

We define: D, 8 =5 ¢(X) if D x B(X) Fa+a,ax ¢
D x pB(X)

7N

D B(X)

Mod(zS\‘ Md(T(X))

Do

Dealing with Open 2-Data State Formulae

A+A0A+A0AX D1><D2><B
A A Ax Dy (X)
T
’\J /X) Mod((S)\A:’oj(%)d(T(X))
Ao Do
(a) Colimit (b) Limit
We define:

(D1, D), B s ¥(X) if D1 x Do x B(X) Eats,nta,nx ¥

e.g. Y({x}) = (val' = val +x)

Semantic Models in 5&

Let ¥ = (E,d: Ag — A) be an event/data signature.

A configuration is a pair v = (ctrl, data) where ctrl is a control
state and data is a data state formalised as a model over the
data signature A (whose reduct along § is Dp).

Semantic Models in Sé

Let ¥ = (E,d: Ag — A) be an event/data signature.

A configuration is a pair v = (ctrl, data) where ctrl is a control
state and data is a data state formalised as a model over the
data signature A (whose reduct along § is Dp).

A Y -model is a labelled transition system M = (I, y0, —)
such that

® [is a set of configurations,

® ~o €I is the initial configuration,

. 3
® — is a family of transition relations M C [xT, one for

each event e(any X) ¢ E and each valuation 7y for X,

all configurations in I are reachable from g via —.

Satisfaction Relation in Sé
For any 2-model M, configuration v € I and data variable
valuation 8 : X — Mod(0) “data models”,
* M., B = (e(any X) Ji2s(Y))g if
e(Bx)

there exists a valuation 8x for X and ¥ —== ~/ such that
(data(7y), data(v")), B{X = Bx} Fas 12s5(Y) and M,~', 8 = ¢,

Satisfaction Relation in Sé

For any 2-model M, configuration v € I and data variable
valuation 8 : X — Mod(0) “data models”,

* M., B = (e(any X) Ji2s(Y))g if
there exists a valuation Bx for X and ~ M ~" such that
(data(n), data(y')), BIX > Bx} o as(Y) and M, ', 8 k= g,

. M,VBFVX @ if
M, 7, B [= ¢ for all § with 3(X) = B(%) for all & # x,

&‘L -
For sentences p, M =% o if M.y =

Satisfaction Relation in 5&

For any 2-model M, configuration v € I and data variable
valuation 8 : X — Mod(0) “data models”,

* M., B = (e(any X) Ji2s(Y))g if
there exists a valuation Bx for X and ~ M ~" such that
(data(n), data(')), BIX 1> Bx} 2 tas(Y) and M, ', 8 k= @,

. M,WBFVX @ if
M, 7, B [= ¢ for all § with 3(X) = B(%) for all & # x,

. e
C‘L -
For sentences ¢, ME® ¢ if M,y =g

&s-logic is an institution!

Satisfaction Relation in 5&

For any 2-model M, configuration v € I and data variable
valuation 8 : X — Mod(0) “data models”,

* M., B = (e(any X) Ji2s(Y))g if
there exists a valuation Bx for X and ~ M ~" such that
(data(n), data(')), BIX 1> Bx} 2 tas(Y) and M, ', 8 k= @,

. M,VBFVX @ if
M, 7, B [= ¢ for all § with 3(X) = B(%) for all & # x,

° e
ol
For sentences ¢, M == ¢ if M.y = ¢
&s-logic is an institution!

Related work: [Martins, Madeira, Diaconescu, Barbosa; CALCO 2011]
Hybridization of institutions

Conclusion

Let us celebrate Luis!

With all our best wishes for
many further happy and successful years!

