
Specification of Systems with Parameterised
Events: An Institution-independent Approach

Rolf Hennicker & Alexander Knapp

LMU Munich & University of Augsburg

Dedicated to Luis Soares Barbosa

on the occasion of his 60th birthday

Some Bits of History

• 2005: First meeting of Luis and Rolf in Macau
(FACS Wsh., Formal Aspects of Component Software)

Common research interest: Rigorous development of reactive
component systems (formal models, logics, methods)

• 2010-2013: MONDRIAN project - Foundations for
architectural design (Luis coordinator, Rolf external
consultant)

• 2015: First common publication: Refinement in hybridised
institutions, with A. Madeira and M. Martins, FAoC journal

• 2016-2022: Continuation of our common research,
with Alexander Knapp joining

Luis’ Habilitation 2016

Development of Reactive Component Systems

We are interested in a stepwise refinement methodology
SP0 ⇝ SP1 ⇝ · · ·⇝ SPn

For doing this we want a logic that is suitable for specifications of
reactive component systems on various abstraction levels.

Our proposal: Dynamic Logic with Binders D↓

[ICTAC 2016] with A. Madeira and M. Martins

D↓-logic is suitable to express

• abstract specifications of requirements (safety, liveness, ...)
• we take regular modalities from Dynamic Logic

• constructive specifications representing concrete processes
• we take variables with binders from Hybrid Logic

Actions and Formulæ in D↓-Logic

A signature is a finite set A of atomic actions.

Structured actions:

α ::= a ∈ A | α;α | α+ α | α∗

Formulæ:

φ ::= true | ¬φ | φ ∨ φ | ⟨α⟩φ

| z | ↓ z . φ | @zφ

where α is a structured action over A

and z a state variable.

Usual abbreviations, like [α]φ = ¬⟨α⟩¬φ

Sentences are formulæ without free variables.

Actions and Formulæ in D↓-Logic

A signature is a finite set A of atomic actions.

Structured actions:

α ::= a ∈ A | α;α | α+ α | α∗

Formulæ:

φ ::= true | ¬φ | φ ∨ φ | ⟨α⟩φ | z | ↓ z . φ | @zφ

where α is a structured action over A
and z a state variable.

Usual abbreviations, like [α]φ = ¬⟨α⟩¬φ

Sentences are formulæ without free variables.

Actions and Formulæ in D↓-Logic

A signature is a finite set A of atomic actions.

Structured actions:

α ::= a ∈ A | α;α | α+ α | α∗

Formulæ:

φ ::= true | ¬φ | φ ∨ φ | ⟨α⟩φ | z | ↓ z . φ | @zφ

where α is a structured action over A
and z a state variable.

Usual abbreviations, like [α]φ = ¬⟨α⟩¬φ

Sentences are formulæ without free variables.

Semantics of D↓-logic

Models are reachable LTS with initial state:

M = (W ,w0, (
a−→⊆ W ×W)a∈A)

Satisfaction relation:

For sentences φ, M |=D↓
φ if M,w0 |= φ

Satisfaction Relation in D↓

For any A-model M = (W ,w0,−→), w ∈ W and v : Z → W ,

• M,w , v |= ⟨α⟩φ if

there exists w
α−→ w ′ such that M,w ′, v |= φ,

• M,w , v |= z if w = v(z),

• M,w , v |=↓ z . φ if M,w , v{z 7→ w} |= φ,

• M,w , v |= @zφ if M, v(z), v |= φ,

• . . .

Abstract and Concrete Specifications in D↓

Example: Bounded Counter with two actions inc, reset

Abstract requirements specification:

• It is always possible to reset the counter:

[(inc + reset)∗]⟨reset⟩ true

• Whenever a reset has happened, two successive increments are
possible:

[(inc + reset)∗; reset]⟨inc ; inc⟩ true

• Three increments in a row are never allowed:

[(inc + reset)∗; inc; inc ; inc] false

Concrete specification:

• Whenever a reset has happened, the counter is in its initial state:

↓ z0.[(inc + reset)∗; reset] z0

Abstract and Concrete Specifications in D↓

Example: Bounded Counter with two actions inc, reset

Abstract requirements specification:

• It is always possible to reset the counter:

[(inc + reset)∗]⟨reset⟩ true

• Whenever a reset has happened, two successive increments are
possible:

[(inc + reset)∗; reset]⟨inc ; inc⟩ true

• Three increments in a row are never allowed:

[(inc + reset)∗; inc; inc ; inc] false

Concrete specification:

• Whenever a reset has happened, the counter is in its initial state:

↓ z0.[(inc + reset)∗; reset] z0

D↓-Logic is an Institution
In: [Barbosa, Hennicker, Madeira, and Martins; TCS 2018]

• The notion of an institution [Goguen and Burstall 83] captures the
essential ingredients that a logical system should provide when
being used in formal software development.

• Clear separation between syntax (signatures and sentences),
semantics (mathematical models) and the relationship between the
two in terms of satisfaction relations M |=Σ φ.

An institution consists of

• a category Sig of signatures,

• a sentences functor Sen : Sig → Set,

• a models functor Mod : Sigop → Cat, and

• a family of satisfaction relations |=Σ ⊆ |Mod(Σ)| × Sen(Σ)

such that the satisfaction condition holds, i.e.

for all σ : Σ → Σ′ in Sig , M ′ ∈ Mod(Σ′), and φ ∈ Sen(Σ)

Mod(σ)(M ′) |=Σ φ ⇐⇒ M ′ |=Σ′ Sen(σ)(φ)

D↓-Logic is an Institution
In: [Barbosa, Hennicker, Madeira, and Martins; TCS 2018]

• The notion of an institution [Goguen and Burstall 83] captures the
essential ingredients that a logical system should provide when
being used in formal software development.

• Clear separation between syntax (signatures and sentences),
semantics (mathematical models) and the relationship between the
two in terms of satisfaction relations M |=Σ φ.

An institution consists of

• a category Sig of signatures,

• a sentences functor Sen : Sig → Set,

• a models functor Mod : Sigop → Cat, and

• a family of satisfaction relations |=Σ ⊆ |Mod(Σ)| × Sen(Σ)

such that the satisfaction condition holds, i.e.

for all σ : Σ → Σ′ in Sig , M ′ ∈ Mod(Σ′), and φ ∈ Sen(Σ)

Mod(σ)(M ′) |=Σ φ ⇐⇒ M ′ |=Σ′ Sen(σ)(φ)

D↓-Logic is an Institution
In: [Barbosa, Hennicker, Madeira, and Martins; TCS 2018]

• The notion of an institution [Goguen and Burstall 83] captures the
essential ingredients that a logical system should provide when
being used in formal software development.

• Clear separation between syntax (signatures and sentences),
semantics (mathematical models) and the relationship between the
two in terms of satisfaction relations M |=Σ φ.

An institution consists of

• a category Sig of signatures,

• a sentences functor Sen : Sig → Set,

• a models functor Mod : Sigop → Cat, and

• a family of satisfaction relations |=Σ ⊆ |Mod(Σ)| × Sen(Σ)

such that the satisfaction condition holds, i.e.

for all σ : Σ → Σ′ in Sig , M ′ ∈ Mod(Σ′), and φ ∈ Sen(Σ)

Mod(σ)(M ′) |=Σ φ ⇐⇒ M ′ |=Σ′ Sen(σ)(φ)

Integrating Data: The Event/Data-Based Logic E↓

Example: Bounded Counter

with two data attributes val : Nat, max : Nat

Abstract requirement:

Whenever the counter value is smaller than the upper bound an
increment is possible:

[(inc + reset)∗](val < max) → ⟨inc(val′ = val + 1⟩true

Syntactic Concepts of E↓-Logic

An event/data signature Σ = (E ,∆) consists of a finite set E of
events and a finite set ∆ of data attributes.

Event/data actions:

α ::= e(ψ2∆ | α;α | α+ α | α∗

where e ∈ E and ψ2∆ is a “2-data state formula”,
i.e. a data state formula over ∆ ∪∆′.

Σ-formulæ:

φ ::= true | ¬φ | φ ∨ φ | ⟨α⟩φ | z | ↓ z . φ | @zφ | ψ∆

where ψ∆ is a “data state formula” over ∆.

We can turn E↓-logic into an institution

In: [Hennicker, Knapp, Madeira; FAoC 2021]
Hybrid dynamic logic institutions for event/data-based systems

Syntactic Concepts of E↓-Logic

An event/data signature Σ = (E ,∆) consists of a finite set E of
events and a finite set ∆ of data attributes.

Event/data actions:

α ::= e(ψ2∆ | α;α | α+ α | α∗

where e ∈ E and ψ2∆ is a “2-data state formula”,
i.e. a data state formula over ∆ ∪∆′.

Σ-formulæ:

φ ::= true | ¬φ | φ ∨ φ | ⟨α⟩φ | z | ↓ z . φ | @zφ | ψ∆

where ψ∆ is a “data state formula” over ∆.

We can turn E↓-logic into an institution

In: [Hennicker, Knapp, Madeira; FAoC 2021]
Hybrid dynamic logic institutions for event/data-based systems

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat.

Let φ be: ∀x . (val + x ≤ max → ⟨inc(x)(val′ = val + x⟩true)

We want to express that φ holds in all reachable states.

Attempt:

[(inc(x) + reset)∗]φ not good: value(s) of x unclear

∀x . [(inc(x) + reset)∗]φ not good: always the same value for x

in the iteration

Our solution:

[(inc(any x) + reset)∗]φ

any x expresses a non-deterministic choice for the value of x

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat.

Let φ be: ∀x . (val + x ≤ max → ⟨inc(x)(val′ = val + x⟩true)

We want to express that φ holds in all reachable states.

Attempt:

[(inc(x) + reset)∗]φ not good: value(s) of x unclear

∀x . [(inc(x) + reset)∗]φ not good: always the same value for x

in the iteration

Our solution:

[(inc(any x) + reset)∗]φ

any x expresses a non-deterministic choice for the value of x

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat.

Let φ be: ∀x . (val + x ≤ max → ⟨inc(x)(val′ = val + x⟩true)

We want to express that φ holds in all reachable states.

Attempt:

[(inc(x) + reset)∗]φ

not good: value(s) of x unclear

∀x . [(inc(x) + reset)∗]φ not good: always the same value for x

in the iteration

Our solution:

[(inc(any x) + reset)∗]φ

any x expresses a non-deterministic choice for the value of x

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat.

Let φ be: ∀x . (val + x ≤ max → ⟨inc(x)(val′ = val + x⟩true)

We want to express that φ holds in all reachable states.

Attempt:

[(inc(x) + reset)∗]φ not good: value(s) of x unclear

∀x . [(inc(x) + reset)∗]φ not good: always the same value for x

in the iteration

Our solution:

[(inc(any x) + reset)∗]φ

any x expresses a non-deterministic choice for the value of x

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat.

Let φ be: ∀x . (val + x ≤ max → ⟨inc(x)(val′ = val + x⟩true)

We want to express that φ holds in all reachable states.

Attempt:

[(inc(x) + reset)∗]φ not good: value(s) of x unclear

∀x . [(inc(x) + reset)∗]φ

not good: always the same value for x

in the iteration

Our solution:

[(inc(any x) + reset)∗]φ

any x expresses a non-deterministic choice for the value of x

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat.

Let φ be: ∀x . (val + x ≤ max → ⟨inc(x)(val′ = val + x⟩true)

We want to express that φ holds in all reachable states.

Attempt:

[(inc(x) + reset)∗]φ not good: value(s) of x unclear

∀x . [(inc(x) + reset)∗]φ not good: always the same value for x

in the iteration

Our solution:

[(inc(any x) + reset)∗]φ

any x expresses a non-deterministic choice for the value of x

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat.

Let φ be: ∀x . (val + x ≤ max → ⟨inc(x)(val′ = val + x⟩true)

We want to express that φ holds in all reachable states.

Attempt:

[(inc(x) + reset)∗]φ not good: value(s) of x unclear

∀x . [(inc(x) + reset)∗]φ not good: always the same value for x

in the iteration

Our solution:

[(inc(any x) + reset)∗]φ

any x expresses a non-deterministic choice for the value of x

Integrating Event Parameters
Submitted for [Festschrift for Luis, 2022]

Example: Bounded Counter

Event with parameter: inc(x) where x is a variable of type Nat.

Let φ be: ∀x . (val + x ≤ max → ⟨inc(x)(val′ = val + x⟩true)

We want to express that φ holds in all reachable states.

Attempt:

[(inc(x) + reset)∗]φ not good: value(s) of x unclear

∀x . [(inc(x) + reset)∗]φ not good: always the same value for x

in the iteration

Our solution:

[(inc(any x) + reset)∗]φ

any x expresses a non-deterministic choice for the value of x

Structured Actions and Formulæ in E↓
p -Logic

An event/data signature Σ = (E , δ) consists of
• a finite set E of parameterised events e(anyX)
where X is a finite list of variables and

• a data signature morphism δ : ∆0 → ∆

We assume given an arbitrary data institution which admits
pushouts of signatures and amalgamations of models!

The set of event/data actions over Σ is given by

α ::= e(anyX)(ψ2δ(Y) | α;α | α+ α | α∗

where ψ2δ(Y) is a “2-data state formula with variables in Y ”.

The set of Σ-formulæ is given by

φ ::= true | ¬φ | φ ∨ φ | ⟨α⟩φ | ψδ(X) | ∀x . φ

where ψδ(X) is a “data state formula with variables in X”.

Structured Actions and Formulæ in E↓
p -Logic

An event/data signature Σ = (E , δ) consists of
• a finite set E of parameterised events e(anyX)
where X is a finite list of variables and

• a data signature morphism δ : ∆0 → ∆

We assume given an arbitrary data institution which admits
pushouts of signatures and amalgamations of models!

The set of event/data actions over Σ is given by

α ::= e(anyX)(ψ2δ(Y) | α;α | α+ α | α∗

where ψ2δ(Y) is a “2-data state formula with variables in Y ”.

The set of Σ-formulæ is given by

φ ::= true | ¬φ | φ ∨ φ | ⟨α⟩φ | ψδ(X) | ∀x . φ

where ψδ(X) is a “data state formula with variables in X”.

Structured Actions and Formulæ in E↓
p -Logic

An event/data signature Σ = (E , δ) consists of
• a finite set E of parameterised events e(anyX)
where X is a finite list of variables and

• a data signature morphism δ : ∆0 → ∆

We assume given an arbitrary data institution which admits
pushouts of signatures and amalgamations of models!

The set of event/data actions over Σ is given by

α ::= e(anyX)(ψ2δ(Y) | α;α | α+ α | α∗

where ψ2δ(Y) is a “2-data state formula with variables in Y ”.

The set of Σ-formulæ is given by

φ ::= true | ¬φ | φ ∨ φ | ⟨α⟩φ | ψδ(X) | ∀x . φ

where ψδ(X) is a “data state formula with variables in X”.

Structured Actions and Formulæ in E↓
p -Logic

An event/data signature Σ = (E , δ) consists of
• a finite set E of parameterised events e(anyX)
where X is a finite list of variables and

• a data signature morphism δ : ∆0 → ∆

We assume given an arbitrary data institution which admits
pushouts of signatures and amalgamations of models!

The set of event/data actions over Σ is given by

α ::= e(anyX)(ψ2δ(Y) | α;α | α+ α | α∗

where ψ2δ(Y) is a “2-data state formula with variables in Y ”.

The set of Σ-formulæ is given by

φ ::= true | ¬φ | φ ∨ φ | ⟨α⟩φ | ψδ(X) | ∀x . φ

where ψδ(X) is a “data state formula with variables in X”.

Our Solution Reconsidered

[(inc(any x) + reset)∗]φ

is
[(inc(any x) + reset)∗]

∀x . (val + x ≤ max → ⟨inc(x)(val′ = val + x⟩true)

But inc(x)(... is not syntactically correct.
Therefore we write

[(inc(any x) + reset)∗]

∀x . (val + x ≤ max → ⟨inc(any y)(y = x ∧ val′ = val + x⟩true)

Our Solution Reconsidered

[(inc(any x) + reset)∗]φ

is
[(inc(any x) + reset)∗]

∀x . (val + x ≤ max → ⟨inc(x)(val′ = val + x⟩true)

But inc(x)(... is not syntactically correct.

Therefore we write

[(inc(any x) + reset)∗]

∀x . (val + x ≤ max → ⟨inc(any y)(y = x ∧ val′ = val + x⟩true)

Our Solution Reconsidered

[(inc(any x) + reset)∗]φ

is
[(inc(any x) + reset)∗]

∀x . (val + x ≤ max → ⟨inc(x)(val′ = val + x⟩true)

But inc(x)(... is not syntactically correct.
Therefore we write

[(inc(any x) + reset)∗]

∀x . (val + x ≤ max → ⟨inc(any y)(y = x ∧ val′ = val + x⟩true)

Open Formulæ and Valuations (institution independent)

Let δ : ∆0 → ∆ be a data signature morphism.

A variable over δ has a name, say x , and an associated type
τ(x) : ∆0 → ∆x .

An open δ-formula is a pair, written φ(X), such that X is a finite
set of variable names and φ is a data sentence over the pushout
signature

∆ +∆0 ∆X

∆ ∆X

∆0

δ τ(X)

A valuation for the variables X is a function β which maps any
x ∈ X to a ∆x -data model β(x).

Open Formulæ and Valuations (institution independent)

Let δ : ∆0 → ∆ be a data signature morphism.

A variable over δ has a name, say x , and an associated type
τ(x) : ∆0 → ∆x .

An open δ-formula is a pair, written φ(X), such that X is a finite
set of variable names and φ is a data sentence over the pushout
signature

∆ +∆0 ∆X

∆ ∆X

∆0

δ τ(X)

A valuation for the variables X is a function β which maps any
x ∈ X to a ∆x -data model β(x).

Satisfaction of Open Data Formulæ

For δ : ∆0 → ∆ we assume a fixed ∆0-model D0 and we consider
the class of ∆-models D whose reduct along δ is D0.

We define: D, β |=δ φ(X) if D × β(X) |=∆+∆0
∆X

φ

D × β(X)

D β(X)

D0

Mod(δ) Mod(τ(X))

Dealing with Open 2-Data State Formulæ

∆+∆0 ∆+∆0 ∆X

∆ ∆ ∆X

∆0

δ τ(X)δ

(a) Colimit

D1 × D2 × β(X)

D1 D2 β(X)

D0

Mod(δ) Mod(τ(X))
Mod(δ)

(b) Limit

We define:

(D1,D2), β |=2δ ψ(X) if D1 × D2 × β(X) |=∆+∆0
∆+∆0

∆X
ψ

e.g. ψ({x}) ≡ (val′ = val + x)

Semantic Models in E↓
p

Let Σ = (E , δ : ∆0 → ∆) be an event/data signature.

A configuration is a pair γ = (ctrl , data) where ctrl is a control
state and data is a data state formalised as a model over the
data signature ∆ (whose reduct along δ is D0).

A Σ-model is a labelled transition system M = (Γ, γ0,−→)
such that

• Γ is a set of configurations,

• γ0 ∈ Γ is the initial configuration,

• −→ is a family of transition relations
e(βX)−−−−→⊆ Γ× Γ, one for

each event e(anyX) ∈ E and each valuation βX for X ,

• all configurations in Γ are reachable from γ0 via −→.

Semantic Models in E↓
p

Let Σ = (E , δ : ∆0 → ∆) be an event/data signature.

A configuration is a pair γ = (ctrl , data) where ctrl is a control
state and data is a data state formalised as a model over the
data signature ∆ (whose reduct along δ is D0).

A Σ-model is a labelled transition system M = (Γ, γ0,−→)
such that

• Γ is a set of configurations,

• γ0 ∈ Γ is the initial configuration,

• −→ is a family of transition relations
e(βX)−−−−→⊆ Γ× Γ, one for

each event e(anyX) ∈ E and each valuation βX for X ,

• all configurations in Γ are reachable from γ0 via −→.

Satisfaction Relation in E↓
p

For any Σ-model M, configuration γ ∈ Γ and data variable
valuation β : X → Mod(δ) “data models”,

• M, γ, β |= ⟨e(anyX)(ψ2δ(Y)⟩φ if

there exists a valuation βX for X and γ
e(βX)−−−→ γ′ such that

(data(γ), data(γ′)), β{X 7→ βX} |=2δ ψ2δ(Y) and M, γ′, β |= φ,

• M, γ, β |= ∀x . φ if
M, γ, β̂ |= φ for all β̂ with β̂(x̂) = β(x̂) for all x̂ ̸= x ,

• ...

For sentences φ, M |=E↓
p φ if M, γ0 |= φ

E↓
p -logic is an institution!

Related work: [Martins, Madeira, Diaconescu, Barbosa; CALCO 2011]

Hybridization of institutions

Satisfaction Relation in E↓
p

For any Σ-model M, configuration γ ∈ Γ and data variable
valuation β : X → Mod(δ) “data models”,

• M, γ, β |= ⟨e(anyX)(ψ2δ(Y)⟩φ if

there exists a valuation βX for X and γ
e(βX)−−−→ γ′ such that

(data(γ), data(γ′)), β{X 7→ βX} |=2δ ψ2δ(Y) and M, γ′, β |= φ,

• M, γ, β |= ∀x . φ if
M, γ, β̂ |= φ for all β̂ with β̂(x̂) = β(x̂) for all x̂ ̸= x ,

• ...

For sentences φ, M |=E↓
p φ if M, γ0 |= φ

E↓
p -logic is an institution!

Related work: [Martins, Madeira, Diaconescu, Barbosa; CALCO 2011]

Hybridization of institutions

Satisfaction Relation in E↓
p

For any Σ-model M, configuration γ ∈ Γ and data variable
valuation β : X → Mod(δ) “data models”,

• M, γ, β |= ⟨e(anyX)(ψ2δ(Y)⟩φ if

there exists a valuation βX for X and γ
e(βX)−−−→ γ′ such that

(data(γ), data(γ′)), β{X 7→ βX} |=2δ ψ2δ(Y) and M, γ′, β |= φ,

• M, γ, β |= ∀x . φ if
M, γ, β̂ |= φ for all β̂ with β̂(x̂) = β(x̂) for all x̂ ̸= x ,

• ...

For sentences φ, M |=E↓
p φ if M, γ0 |= φ

E↓
p -logic is an institution!

Related work: [Martins, Madeira, Diaconescu, Barbosa; CALCO 2011]

Hybridization of institutions

Satisfaction Relation in E↓
p

For any Σ-model M, configuration γ ∈ Γ and data variable
valuation β : X → Mod(δ) “data models”,

• M, γ, β |= ⟨e(anyX)(ψ2δ(Y)⟩φ if

there exists a valuation βX for X and γ
e(βX)−−−→ γ′ such that

(data(γ), data(γ′)), β{X 7→ βX} |=2δ ψ2δ(Y) and M, γ′, β |= φ,

• M, γ, β |= ∀x . φ if
M, γ, β̂ |= φ for all β̂ with β̂(x̂) = β(x̂) for all x̂ ̸= x ,

• ...

For sentences φ, M |=E↓
p φ if M, γ0 |= φ

E↓
p -logic is an institution!

Related work: [Martins, Madeira, Diaconescu, Barbosa; CALCO 2011]

Hybridization of institutions

Conclusion

Let us celebrate Luis!

With all our best wishes for
many further happy and successful years!

