Runtime Composition Of Systems of Interacting Cyber-Physical Components

Benjamin Lion, Farhad Arbab, and Carolyn Talcott

Cyber-physical system

Cyber:

- discrete actions;
- experiments are repeatable;
- do not miss any observations.

Physics:

- continuous changes;
- behavior may depend on time;
- eventually sampling losses.

Running Example

R ₃	R_2	R_1

Context:

- robots exhibit discrete sequences of moves as a *cyber* system;
- field changes its state continuously as a *physical* system;
- reachability query on the state of the field.

Running Example



Modeling challenges:

- actions between robots may interleave;
- interactions with the physical field may lead to interferences;
- robots may not observe all possible events of other robots;

Will the robots eventually get sorted?

Content

- 1. Algebra of Components
 - component
 - $\circ~$ products and division
- 2. Specification of components
 - $\circ~$ transition system
 - compositionality
 - compatibility
- 3. Analysis
 - scenario
 - results

Discrete event framework

Preliminaries

Ingredients for our model:

- set of discrete events *E*;
- observation as a pair of a set of events O and a time stamp t, i.e., $(O, t) \in \mathcal{P}(E) \times \mathbb{R}_+$.
- timed-event sequences (TES) as an infinite sequence of observations, i.e., σ : N → (P(E) × R₊) with time increasing for consecutive observations.

For a TES σ , we write $\sigma(t) = O$ if there exists $i \in \mathbb{N}$ such that $\sigma(i) = (O, t)$, and $\sigma(t) = \emptyset$ otherwise.

Discrete event framework

Ingredients for our model:

- set of discrete events E;
- observation as a pair of a set of events O and a time stamp t, i.e., $(O, t) \in \mathcal{P}(E) \times \mathbb{R}_+$.
- timed-event sequences (TES) as an infinite sequence of observations, i.e., σ : N → (P(E) × R₊) with time increasing for consecutive observations.

For a TES σ , we write $\sigma(t) = O$ if there exists $i \in \mathbb{N}$ such that $\sigma(i) = (O, t)$, and $\sigma(t) = \emptyset$ otherwise.

Similar semantic model as in (Fiadeiro and Lopes, 2017) and (Arbab and Rutten, 2002)

Component

A component C = (E, L) is a pair of

■ an interface *E* is a set of observable events

- position readings r(i, (x, y)) with $x, y \in \mathbb{N}$ for a robot;
- move E(i) as robot *i* moves East;
- position display $(x, y)_i$ with $x, y \in \mathbb{R}$ for a field with obstacle *i*;

Component

A component C = (E, L) is a pair of

■ an interface *E* is a set of observable events

- position readings r(i, (x, y)) with $x, y \in \mathbb{N}$ for a robot;
- move E(i) as robot *i* moves East;
- position display $(x, y)_i$ with $x, y \in \mathbb{R}$ for a field with obstacle *i*;
- a behavior L is a set of Timed Events Streams over E (L ⊆ TES(E)), e.g.,

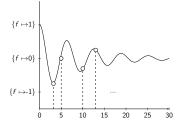
$$\begin{array}{c|ccccc} t & \sigma \in L & \eta \in L \\ \hline t_1 & \{N(1)\} & \{N(2)\} \\ t_2 & \{W(1)\} & \{E(2)\} \\ t_3 & \{r(i, (n; m))\} & - \\ \hline \end{array}$$

with $t_1, t_2, t_3, ...$ increasing and Non-Zeno.

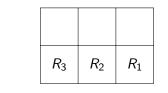
Component Physical example

A function $f : \mathbb{R}_+ \to D$ as a component $C = (E_f, L_f)$ where:

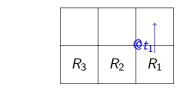
- its interface E_f is the set of events D;
- its behavior L_f is the set of sequences of images f(x) sampled at monotonically increasing, non-Zeno sequences of values of x.



-



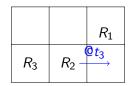
t	$\sigma: R_1$	$\eta: R_2$	au: F

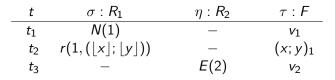


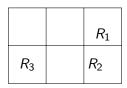
$$\begin{array}{cccc} t & \sigma: R_1 & \eta: R_2 & \tau: F \\ \hline t_1 & N(1) & - & v_1 \end{array}$$

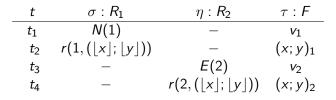
		R_1
R ₃	R_2	

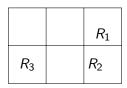
$$\begin{array}{c|cccc} t & \sigma : R_1 & \eta : R_2 & \tau : F \\ \hline t_1 & \mathcal{N}(1) & - & v_1 \\ t_2 & r(1, (\lfloor x \rfloor; \lfloor y \rfloor)) & - & (x; y)_1 \end{array}$$

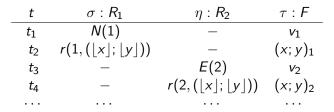












Composition Goal

Composite components as a *product* of components.

Products must capture:

- dependence between events (e.g., synchrony);
- merge of two observations (e.g., union).

Those two features define an interaction signature.

Algebra of Components

Interaction signature

 L_1 and L_2 be two sets of TESs.

Composability: *R* is a relation that says *which* pair $(\sigma_1, \sigma_2) \in L_1 \times L_2$ can compose

Composition: \oplus is a function that says *how* a pair $(\sigma_1, \sigma_2) \in L_1 \times L_2$ compose to an element $\sigma_1 \oplus \sigma_2 \in L$.

An interaction signature Σ is a pair $\Sigma = (R, \oplus)$.

Algebra of Components Interaction signature (examples)

Let $(\sigma \cup \tau)(t) = \sigma(t) \cup \tau(t)$ for any TESs σ and τ .

Synchronous interaction signature $\Sigma_{sync} = (R_{sync}(E_1, E_2), \cup)$ has $(\sigma, \tau) \in R_{sync}(E_1, E_2)$ if and only if $\sigma(t) \cap E_2 = \tau(t) \cap E_1$;

Algebra of Components Interaction signature (examples)

Let $(\sigma \cup \tau)(t) = \sigma(t) \cup \tau(t)$ for any TESs σ and τ .

Synchronous interaction signature $\Sigma_{sync} = (R_{sync}(E_1, E_2), \cup)$ has $(\sigma, \tau) \in R_{sync}(E_1, E_2)$ if and only if $\sigma(t) \cap E_2 = \tau(t) \cap E_1$;

Asynchronous interaction signature $\Sigma_{async} = (R_{async}, \cup)$ has $(\sigma, \tau) \in R_{async}$ if and only if $\sigma(t) \cap \tau(t) = \emptyset$;

Algebra of Components Interaction signature (examples)

Let $(\sigma \cup \tau)(t) = \sigma(t) \cup \tau(t)$ for any TESs σ and τ .

Synchronous interaction signature $\Sigma_{sync} = (R_{sync}(E_1, E_2), \cup)$ has $(\sigma, \tau) \in R_{sync}(E_1, E_2)$ if and only if $\sigma(t) \cap E_2 = \tau(t) \cap E_1$;

Asynchronous interaction signature $\Sigma_{async} = (R_{async}, \cup)$ has $(\sigma, \tau) \in R_{async}$ if and only if $\sigma(t) \cap \tau(t) = \emptyset$;

Free interaction signature $\Sigma_{free} = (R_{free}, \cup)$ has $(\sigma, \tau) \in R_{free}$ for all (σ, τ) ;

Algebra of Components Greatest fixed point

Construct Σ co-inductively, given a relation on observations κ .

Algebra of Components Greatest fixed point

Construct Σ co-inductively, given a relation on observations $\kappa.$

The function ϕ_{κ} takes a set *S* of pairs of TESs and returns the set:

$$\phi_{\kappa}(S) = \{(\sigma, \tau) \mid (\sigma(0), \tau(0)) \in \kappa, \text{ and } (\sigma, \tau)' \in S\}$$

where $(\sigma, \tau)'$ drops the first observation(s).

The greatest post fixed point of ϕ_{κ} defines the set of composable pairs, i.e.,

$$[\kappa] = \bigcup \{ S \mid S \subseteq \phi_{\kappa}(S) \}$$

Algebra of Components Greatest fixed point

Construct Σ co-inductively, given a relation on observations $\kappa.$

The function ϕ_{κ} takes a set *S* of pairs of TESs and returns the set:

$$\phi_\kappa(S) = \{(\sigma, au) \mid (\sigma(0), au(0)) \in \kappa, \text{ and } (\sigma, au)' \in S\}$$

where $(\sigma, \tau)'$ drops the first observation(s).

The greatest post fixed point of ϕ_{κ} defines the set of composable pairs, i.e.,

$$[\kappa] = \bigcup \{ S \mid S \subseteq \phi_{\kappa}(S) \}$$

 $\Sigma = ([\kappa], \cup)$ is an interaction signature.

Algebra of Components Interaction signature (example)

Interaction signature $\Sigma_{FR} = ([\kappa_{FR}], \cup)$ between the Field and Robot is such that:

- an event (x, y) on the field is related to an approximated position event ([x], [y]) in a robot observation;
- a move event d(i) of robot i in direction d is related to a speed event v_i on the field.

 Σ_{FR} is co-inductively defined.

Algebra of Components Product

We fix two components $C_1 = (E_1, L_1)$ and $C_2 = (E_2, L_2)$. We fix an interaction signature $\Sigma = (R, \oplus)$.

A product $C_1 \times_{\Sigma} C_2$ is a component (E, L) with

$$\circ \ E = E_1 \cup E_2$$
, and

• for all $\sigma_1 \in L_1$ and $\sigma_2 \in L_2$, $(\sigma_1, \sigma_2) \in R$ implies $\sigma_1 \oplus \sigma_2 \in L$.

	R_1
R ₃	R ₂

$$\begin{array}{c|c} t & \sigma: (R_1 \times_{\Sigma_{free}} R_2 \times_{\Sigma_{free}} R_3) \times_{\Sigma_{RF}} F\\ \hline t_1 & \{N(1), v_1\}\\ t_2 & \{r(1, (\lfloor x \rfloor; \lfloor y \rfloor)), (x; y)_1\}\\ t_3 & \{E(2), v_2\}\\ t_4 & \{r(2, (\lfloor x \rfloor; \lfloor y \rfloor)), (x; y)_2\}\\ \hline \end{array}$$

Specification Construction of components

Given C_1 and C_2 two components, and Σ an interaction signature, we search for a step-by-step construction of a behavior in the composition $C_1 \times_{\Sigma} C_2$.

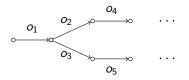
Challenge for a sound runtime composition:

- Let C* be the component whose behavior contains every prefixes of σ : C, completed with empty observations.
- In general, there exist some components C_1 and C_2 such that:

$$C_1^* \times_{\Sigma} C_2^* \neq (C_1 \times_{\Sigma} C_2)^*$$

Specification TES transition system

We define a TES transition system $\mathcal{T} = (E, Q, \rightarrow)$ where transitions are labeled with observations (set of events with a time stamp):



Given a state $q \in Q$ of \mathcal{T} , we give two equivalent semantics of \mathcal{T} as component $\llbracket \mathcal{T}(q) \rrbracket$ using:

- infinite paths on \mathcal{T} whose sequence of labels form a TES;
- greatest post fix point.

Specification Composition

We define a family of products \star_{κ} on TES transition systems and we show compositionality:

$$\llbracket \mathcal{T}_1(q_1) \star_\kappa \mathcal{T}_2(q_2)
rbracket = \llbracket \mathcal{T}_1(q_1)
rbracket imes_\Sigma \llbracket \mathcal{T}_2(q_2)
rbracket$$

where $\Sigma = ([\kappa], \cup)$.

Moreover, we show condition for two \mathcal{T}_1 and \mathcal{T}_2 such that:

$$\llbracket \mathcal{T}_1 \star_{\kappa} \mathcal{T}_2 \rrbracket^* = \llbracket \mathcal{T}_1 \rrbracket^* \times_{\Sigma} \llbracket \mathcal{T}_2 \rrbracket^*$$

In which case, we say that \mathcal{T}_1 and \mathcal{T}_2 are κ -compatible.

Specification

Towards an implementation

Two restrictions:

we restrict to a fragment of TES transition systems with integer time and arbitrary shift:

if
$$q \xrightarrow{(O,n)} q'$$
, then $q \xrightarrow{(O,n+k)} q'$

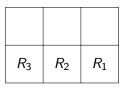
for all $k \in \mathbb{N}$.

• we assume TES transition systems to be κ -compatible.

Simulation

Scenario

We implemented the framework in Maude. We specify the following system:



where:

- each R_i can go in any direction at any step;
- the field is a grid that excludes two robots to move on the same location;
- a protocol $S(R_i, R_j)$ may swap R_i with R_j if R_i is on the adjacent east position of R_j .

Simulation Results

Properties:

System:

$$\times_{\sum_{free}} (R_i \times_{\sum_{RB}} B_i) \times_{\sum_{RF}} F$$

 $1 \le i \le 3$

Results:

P_{sorted} is verified: 12.10³ states, 25s, 31.10⁶ rewrites
 P_b is true

Simulation Results

Properties:

System:

$$(\underset{1 \leq i < j \leq 3}{\times_{Sync}} S(R_i, R_j)) \times_{\Sigma_{SR}} (\underset{1 \leq i \leq 3}{\times_{\Sigma_{RB}}} B_i)) \times_{\Sigma_{RF}} F$$

Results:

P_{sorted} is verified: 8250 states, 71s, 83.10⁶ rewrites
 P_b is false

We proposes an algebra of components with parametrized products to model interaction in cyber-physical systems.

We give a semantics for labeled transition systems as components, and prove its compositionality.

We exposed some conditions for a sound step-by-step composition at runtime.