
Runtime Composition Of
Systems of Interacting

Cyber-Physical Components

Benjamin Lion, Farhad Arbab, and Carolyn Talcott



Cyber-physical system

Cyber:

discrete actions;

experiments are repeatable;

do not miss any observations.

Physics:

continuous changes;

behavior may depend on time;

eventually sampling losses.
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Running Example

R1R2R3

Context:

robots exhibit discrete sequences of moves as a cyber system;

field changes its state continuously as a physical system;

reachability query on the state of the field.
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Running Example

R1R2R3

Modeling challenges:

actions between robots may interleave;

interactions with the physical field may lead to interferences;

robots may not observe all possible events of other robots;

Will the robots eventually get sorted?
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Discrete event framework
Preliminaries

Ingredients for our model:

set of discrete events E ;

observation as a pair of a set of events O and a time stamp t,
i.e., (O, t) ∈ P(E )× R+.

timed-event sequences (TES) as an infinite sequence of
observations, i.e., σ : N → (P(E )× R+)
with time increasing for consecutive observations.

For a TES σ, we write σ(t) = O if there exists i ∈ N such that
σ(i) = (O, t), and σ(t) = ∅ otherwise.
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Discrete event framework
Preliminaries

Ingredients for our model:

set of discrete events E ;

observation as a pair of a set of events O and a time stamp t,
i.e., (O, t) ∈ P(E )× R+.

timed-event sequences (TES) as an infinite sequence of
observations, i.e., σ : N → (P(E )× R+)
with time increasing for consecutive observations.

For a TES σ, we write σ(t) = O if there exists i ∈ N such that
σ(i) = (O, t), and σ(t) = ∅ otherwise.

Similar semantic model as in (Fiadeiro and Lopes, 2017) and
(Arbab and Rutten, 2002)
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Component

A component C = (E , L) is a pair of

an interface E is a set of observable events

◦ position readings r(i , (x , y)) with x , y ∈ N for a robot;
◦ move E (i) as robot i moves East;
◦ position display (x , y)i with x , y ∈ R for a field with obstacle i ;

a behavior L is a set of Timed Events Streams over E (L ⊆
TES(E)), e.g.,

t σ ∈ L η ∈ L

t1 {N(1)} {N(2)}
t2 {W (1)} {E (2)}
t3 {r(i , (n;m))} −
· · · · · · · · ·

with t1, t2, t3, ... increasing and Non-Zeno.
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Component
Physical example

A function f : R+ → D as a component C = (Ef , Lf ) where:

its interface Ef is the set of events D;

its behavior Lf is the set of sequences of images f (x) sampled
at monotonically increasing, non-Zeno sequences of values of
x.

0 5 10 15 20 25 30

{f 7→-1}

{f 7→0}

{f 7→1}

...
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Component
Example sequence

R3 R2 R1

t σ : R1 η : R2 τ : F

t1 N(1) − v1
t2 r(1, (⌊x⌋; ⌊y⌋)) − (x ; y)1
t3 − E (2) v2
t4 − r(2, (⌊x⌋; ⌊y⌋)) (x ; y)2
· · · · · · · · · · · ·
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Component
Example sequence
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Composition
Goal

Composite components as a product of components.

Products must capture:

dependence between events (e.g., synchrony);

merge of two observations (e.g., union).

Those two features define an interaction signature.
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Algebra of Components
Interaction signature

L1 and L2 be two sets of TESs.

Composability: R is a relation that says which pair
(σ1, σ2) ∈ L1 × L2 can compose

Composition: ⊕ is a function that says how a pair
(σ1, σ2) ∈ L1 × L2 compose to an element σ1 ⊕ σ2 ∈ L.

An interaction signature Σ is a pair Σ = (R,⊕).
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Algebra of Components
Interaction signature (examples)

Let (σ ∪ τ)(t) = σ(t) ∪ τ(t) for any TESs σ and τ .

Synchronous interaction signature Σsync = (Rsync(E1,E2),∪) has
(σ, τ) ∈ Rsync(E1,E2) if and only if σ(t) ∩ E2 = τ(t) ∩ E1;

Asynchronous interaction signature Σasync = (Rasync ,∪) has
(σ, τ) ∈ Rasync if and only if σ(t) ∩ τ(t) = ∅;

Free interaction signature Σfree = (Rfree ,∪) has
(σ, τ) ∈ Rfree for all (σ, τ);
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Algebra of Components
Greatest fixed point

Construct Σ co-inductively, given a relation on observations κ.

The function ϕκ takes a set S of pairs of TESs and returns the set:

ϕκ(S) = {(σ, τ) | (σ(0), τ(0)) ∈ κ, and (σ, τ)′ ∈ S}

where (σ, τ)′ drops the first observation(s).

The greatest post fixed point of ϕκ defines the set of composable
pairs, i.e.,

[κ] =
⋃

{S | S ⊆ ϕκ(S)}

Σ = ([κ],∪) is an interaction signature.
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Algebra of Components
Interaction signature (example)

Interaction signature ΣFR = ([κFR ],∪) between the Field and
Robot is such that:

an event (x , y) on the field is related to an approximated
position event (⌊x⌋, ⌊y⌋) in a robot observation;

a move event d(i) of robot i in direction d is related to a
speed event vi on the field.

ΣFR is co-inductively defined.
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Algebra of Components
Product

We fix two components C1 = (E1, L1) and C2 = (E2, L2).
We fix an interaction signature Σ = (R,⊕).

A product C1 ×Σ C2 is a component (E , L) with

◦ E = E1 ∪ E2, and

◦ for all σ1 ∈ L1 and σ2 ∈ L2, (σ1, σ2) ∈ R implies σ1 ⊕ σ2 ∈ L.
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Component
Example sequence

R3

R1

R2

t σ : (R1 ×Σfree
R2 ×Σfree

R3)×ΣRF
F

t1 {N(1), v1}
t2 {r(1, (⌊x⌋; ⌊y⌋)), (x ; y)1}
t3 {E (2), v2}
t4 {r(2, (⌊x⌋; ⌊y⌋)), (x ; y)2}
· · · · · ·
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Specification
Construction of components

Given C1 and C2 two components, and Σ an interaction signature,
we search for a step-by-step construction of a behavior in the
composition C1 ×Σ C2.

Challenge for a sound runtime composition:

Let C ∗ be the component whose behavior contains every
prefixes of σ : C , completed with empty observations.

In general, there exist some components C1 and C2 such that:

C ∗
1 ×Σ C ∗

2 ̸= (C1 ×Σ C2)
∗
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Specification
TES transition system

We define a TES transition system T = (E ,Q,→) where
transitions are labeled with observations (set of events with a time
stamp):

o1
o2

o3

o4

o5

· · ·

· · ·

Given a state q ∈ Q of T , we give two equivalent semantics of T
as component JT (q)K using:

infinite paths on T whose sequence of labels form a TES;

greatest post fix point.
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Specification
Composition

We define a family of products ⋆κ on TES transition systems and
we show compositionality:

JT1(q1) ⋆κ T2(q2)K = JT1(q1)K ×Σ JT2(q2)K

where Σ = ([κ],∪).

Moreover, we show condition for two T1 and T2 such that:

JT1 ⋆κ T2K∗ = JT1K∗ ×Σ JT2K∗

In which case, we say that T1 and T2 are κ-compatible.
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Specification
Towards an implementation

Two restrictions:

we restrict to a fragment of TES transition systems with
integer time and arbitrary shift:

if q
(O,n)−−−→ q′, then q

(O,n+k)−−−−−→ q′

for all k ∈ N.

we assume TES transition systems to be κ-compatible.
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Simulation
Scenario

We implemented the framework in Maude.
We specify the following system:

R1R2R3

where:

each Ri can go in any direction at any step;

the field is a grid that excludes two robots to move on the
same location;

a protocol S(Ri ,Rj) may swap Ri with Rj if Ri is on the
adjacent east position of Rj .
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Simulation
Results

Properties:

Psorted : eventually Ri is on position (i ; 0).

Pb: eventually Bi has energy 0.

System:
×Σfree
1≤i≤3

(Ri ×ΣRB
Bi )×ΣRF

F

Results:

Psorted is verified: 12.103 states, 25s, 31.106 rewrites

Pb is true
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Simulation
Results

Properties:

Psorted : eventually Ri is on position (i ; 0).

Pb: eventually Bi has energy 0.

System:

( ×Σsync

1≤i<j≤3

S(Ri ,Rj))×ΣSR
(×Σfree
1≤i≤3

(Ri ×ΣRB
Bi ))×ΣRF

F

Results:

Psorted is verified: 8250 states, 71s, 83.106 rewrites

Pb is false
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Conclusion

We proposes an algebra of components with parametrized products
to model interaction in cyber-physical systems.

We give a semantics for labeled transition systems as components,
and prove its compositionality.

We exposed some conditions for a sound step-by-step composition
at runtime.
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