PNmatrices at work

PNmatrix = Partfial non-deterministic maftrix
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Plan: PNmatrices and logics

PNmatrix semantics

T

Semantical units: PNmatrices T Logics: consequence relations

\—/

PNmatrices generalize logical matrices by enriching them with partiality and
non-determinism.

Good for compositionality results!
We are after correspondence between operations on logics and operations
on PNmatrices.
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Basic concepts

signatures 3: Np-indexed set of connectives
21N ={Z" 2™,
31U = {2§") U 3, }neno
31\ 2 = {2\ 2™} e,

Propositional languages L = Lx(P) givenby ¢ ::= P | ©O(v,...,1)

for©e X
sulbstitutions o:P — L, o) = ¢(P)° when o(p) = ¢
ingl lusi | L withT CL : B.P29
single-conclusion rules ; wi ,{p} C R e M
multiple-conclusion rules r withT, A C L : pP,P—q pPV4
A e = "p>(@—p)’ g ' p,q
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Single- and multiple-conclusion logics

A Scottian consequence relatfion (set x set-cr)is a >C p(L) X g(L) satisfying:
I'>AifT' N A # 0 (overlap)
rur’ - AUA’IfT > A (dilution)
> AifTUQ > QU A’ for every partition (Q, Q) of some ® C L (cut for sets)

I'? > A for any substitution o : P — L if T' > A (substitution invariance)

Given a set X set-Cr >, its single conclusion fragment . => N(g(L) X L)
is a Tarskion consequence relafion (set x fmla-cr) satisfying:

'+ ¢ if ¢ € T (reflexivity),
TUuI’F ¢if T' = ¢ (Mmonotonicity),
' eif AF@andTI o forevery ¢ € A (fransitivity)

I’ F 7 for any substitution o : P — L if T' F ¢ (subsfitution invariance)

e A setf of set X set-rules R is a basis for > g, the smallest set x set-cr containing R.
e A setf of set X fmla-rules R is a basis for g, the smallest set x fmla-cr containing R.
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Multiple-conclusion calculi and tree-proofs

A calculusis a set of rules (schema) R C p(L) X g(L).

Proofs can be arboreal as rules with a conclusion set with more than a formula
impose branching (case split).

I'>g A2, A7, As T>r Ay
T = I'>r{A;:1 €N}
_— ‘ T
AO A5 A T T
T~ — 0 AO BO
Ay Az Ag Ag Ag | —
| | | \ Ay Ay B,
Az A4 A7 Al(] ‘ —
‘ — Az A2 Bn
* A1r Aix | —
\ ! A Anq
* A13 ‘3 " ‘
I *
Ag A4

Axiomatization as basis for the logic
> g iS the smallest set x set-cr containing R,

Also here, set x fmla-axiomatizations are particular cases of set x set-axiomatizations.

If R are all set x fmla then >gp=> .



Posetal categories Sing and Mult

Mult Objects: (X, >) where > is O set X set-Cr

Morphisms: (31,>1) E (Zg,>2) if X1 C Yo and >1C>9
Sing Objects: (X, ) where I is a set x fmla-cr

Morphisms: (X1,F1) E (Xa,F2) if X1 C ¥y and 1 ChH
Facts:

e Both are complete lattices.

¢ Sing is embeddable in Mult by sending (X, ) to (2, >1)
where > is the smallest set x set-cr such that FCr>.
That is,
' Aiffthereisd € AsuchthatT' F 6

e Sing is a full reflective subcategory of Mult

Mult 1 Sing
W
set X fmla-fragment
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Joins in Mult and Sing

Being complete lattices both Mult and Sing bot have joins.
Given two logics (X1, 1) and (X9, xx2) of the same type,
their join is
(X1, x1) U (g, x2) = (31 U Xa, x1 @ xX2)
where o<; e 3 is the smallest cr of the same type over Ls, s, (P) containing «c; and oa.

Fact:

For sets of set x set-rules R; and R»
[>R1 L] [>R2:[>R1UR2

For sets of set x fmla-rules R; and R»

|_R1 ® l_Rz :|_R1UR2

That is,
the join of two logics is axiomatized by joining axiomatizations for each




Examples of combining logics by joining their calculi

e Language extensions

Adding new connectives to a logic without imposing anything about them

Given > and - over g C X let >

I > A iff

Lo > Ag forsome Iy C Ly, (P), Ag C Ly (P).0: P — Lx(P)withT'g C T, A7 C A
(20, >%) = (Zo, >) ® (X, Brnorules)
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Examples of combining logics by joining their calculi

e Language extensions

Adding new connectives to a logic without imposing anything about them

Given > and - over g C X let >

I > A iff

Lo > Ag forsome Iy C Ly, (P), Ag C Ly (P).0: P — Lx(P)withT'g C T, A7 C A
(20, >%) = (Zo, >) ® (X, Brnorules)

e Combining classical AND and OR

Let R, be formed by the set x set-rules
pPAg pAG P pVp

P q pVq P
PAq P q pvg pV(qVr)
q PAg qVp (pVr)Vq
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Examples of combining logics by joining their calculi

e Language extensions

Adding new connectives to a logic without imposing anything about them

Given > and - over g C X let >

I > A iff

To > Ag forsome Ty C Ly, (P). Ag C Lx,(P), 0 : P — Le(P)withTg CT,AJ C A
(20, >7) = (Zo,>) (X, Brorules)

e Combining classical AND and OR

Let R, be formed by the set x set-rules
pPAG pAg p pVp

P q pVq P
PAq P q pvg pV(qVr)
q PAgq qVp (pVr)Vq

e Fusion of modal logics

Seminal example and well understood via gluing Kripke frames for each of the com-
bined logic.

Our initial motivation for considering PNmatrices was the difficulty in combining two
given semantics to capture the effect of joining axiomatizations
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Starting point: Logical matrices

Given signature ¥ = {X},eny ond fixed L = Lx(P)
Logical matrix M = (V, -y, D)
where (V, «y) is an algebra of fruth-values
set endowed with operations ©y : V* — V for© € (™)

D C V is the set of designated elements corresponding fo 1

Val(M) Valuations over M are v : Ls;(P) — V satisfying
v(©(p15-- 45 0k)) = Om(v(e1),-- -, v(ek))

'y A
iff
for every v over M, v(T') C D implies v(A) N D # 0.

LeT |_M == |_‘>M'

Finite matrices M induce locally tabular logics, that is, Ly (p1,...,pr)/ - is finite.
Note that there is no finite matrix M such that >y=>g Nnor bFy=kFg

norules norules *

As Ly (p1y- -+ Pk)/ A Rogues = Ls(P1, -+, pr) is infinite
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Extending fruth-functionality: non-determinism and partiality

A Z-PNmatrix is a tuple M = (V, -, D)

- Vis a non-empty set (of tfruth-values)
- D C V (the set of designafed truth-vales)
- ©y: V"™ — (V) foreach c € ()

Particular cases:
lotal aond deterministic: Matrix If©y : V™* — {{a} : a € V}

Total: Nmatrix If©y : V' — (V) \ {0}

Deterministic: Pmatrix If ©y : V™ — {{a} : a € V} U {0}
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Logics of PNmatrices

A 3-PNmatrix is a tuple M = (V, -y, D)

- Vis a non-empty set (of tfruth-values)
- D C V (the set of designated truth-vales)
- ©y: V"™ — (V) foreach c € ()

Val(M) Valuations over M are v : Ls(P) — V satisfying

r >wM A
iff
for every v over M, v(T') C D implies v(A) N D # 0.

e non-determinism gives a menu of possibilities for extending the formulas, valua-
tions are not determined by the values over the variables!

¢ valuations live inside (fotal) subNmatrices, partiality forbids valuations combining
incompatible elements

o |ogics of finite PNmatrices are not necessarily locally tabular
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Almost(!) every logic can be characterized by a single PNmatrix
enough for signature to contain a connective of arity > 1

Natural semantics for logical strengthenings and combined logics

Many non-finitely valued logics have finite PNsemantics
Logics of finite PNmatrices are sfill finitary, SAT in NP decision in coNP

Effective bridge with well behaved proof-theory: logics of finite PNmatrices
still can be axiomatized by finite analytical set x set-calculi.
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Some 2-valued Nmatrices you should know

None of the logics induced by the following Nmatrices is induced by a finite matrix (or
even by a finite set of finite matrices.

DM, 1S OXioMatized by the emptyset of rules

—mp| 0 1
Mmp 0 |0,1 0,1 by, isoxiomatized by modus ponens ’%‘*q
1 0 0,1
M | o >u,, IS axiomatized by C-generalization £
I Mg | 0,1 1 M Cp
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Non-determinism easily captures language extensions

Adding new connectives to a logic without imposing anything on them
Given Xo-PNmatrix M = (V, -y, D) let M*® = (V, .=, D) with

©M(a1,...,ak) |f©€ 20
1% otherwise

©(a'17°"7a'k) :{

Facts:

o >y==0>}; and Fy==H

e If general, if ¥ \ 3, confains a 0-ary connective then there is no single
matrix characterizing > or =

e If general, if ¥ \ ¥, contains a n-ary connective with n > 0 then there is
no finite set of finite matrices characterizing >* or -*
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Adding axioms

There is a general recipe that generates semantics for axiomatic extensions by pre-
images by strict morphisms of the original semantics (or rexpansions), yielding

- a denumerable semantics (but quite syntactic) for axiomatic extensions of logics
with denumerable PNmatrix semantics, including intuitionistic and every modal
logics (remember that modus ponnens and generalization can be captured by
a 2-valued Nmatrix)

- afiniteness preserving semantics for a wide range of base logics and axioms sat-
isfying certain shapes

Like the example in the first slide:

B = ({0,1},{1}, &) Bax = ({00,01,10,11}, {10, 11}, -5, )

—5 |0 1

0 1 1 : —Bay 00 01 10 11 ‘ “Ba,

1 o 1 iMPOose p— (—~p——q)
00 | 10 10 10 © 00| 00,01
01 | 10 10,11 10 11 01| 10,11
10 | 00,01 00,01 10 @ 10 | 00,01
11 | 0 01 @ 11 11| 11
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Finite PNmatrices help in detecting low complexity logics

A logic decidable in PTIME

When apply to the following Nmatrix the algorithm generating analyfical set x set-
axiomatization we can observe that that this logic is decidable in PTIME since the
generated rules are all of fype set x fmla (no branching needed)

Ns ‘ f 1 T t Vg ‘ f 1 T ot ‘ -5
f|f f f f fF1 6T L T Ot f t
L1 £HL F f1L Lt L t, L t t 1| L
T|Ff £ T T T T t Tt T T
t | f £L T T t t t t ot t | f
P, q PAg PAg —p —q
” ” ” ” r
pAg p qg P =(Aqg Tt —(pAg) P
D q -(pVaq) -(pVaq) -p, °q
G 7 8 r9 10
pVaq pVaq P —p T4 =(pVaq)
T11 T12
—-p p

This Nmatrix was infroduced in Avron&Ben-Naim&Konikowska (2007) modelling the reasoning of a processor which

collects partial information from different classical sources and it was previously unknown to be of low complexity.
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Categories of PNmatrices PNmatr and PNmatr”

A function f : Vi — V4 is a strict morphism between

M; = (21, M D1> and M, = (22, Mo D2> if 3o Cc 3 and satisfies f_l(Dz) = D; and
for© € X7,

@y (®15 -+ -5 2n)) € Ou,y (F(21),- -+, fn))

This extends the notion of strict morphisms for matrices where one demands f(©(x1,...,xn)) = Ou(f(x1),..., f(zn))
PNmatr:

Objects: (X, M) with Ml a PNmatrix over ¥

Morphisms: strict morphisms between PNmatrices
PNmatr’:

Objects: (X, M) with Ml a PNmatrix over ¥

Morphisms: (31,M;) E (¥q,My) iff 35 C 33 and there is some strict morphism
between M; and M,. Equivalently, if My is a rexpansion of My (Avron 2020)

Facts:

e PNmatr’ is a posetal category

e ( tfransforms products in meets and coproducts in joins
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Saturation and the w-power

We say a PNmatrix M is saturated whenever >y=>,,, that is, whenever

' >p Aiffthereis 6 € A such that Ty 8.

Every sound set x set-rule can be refined to a sound set x fmla-rule,
Example: The 2-valued Nmatrices Miee . Mimp. Msq and the 4-valued are all saturated

WADT2022@Aveiro
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Saturation and the w-power

We say a PNmatrix M is saturated whenever >y=>,,, that is, whenever

' >p Aiffthereis 6 € A such that Ty 8.

Every sound set x set-rule can be refined to a sound set x fmla-rule,
Example: The 2-valued Nmatrices Miee . Mimp. Msq and the 4-valued are all saturated

Let SPNmatr and SPNmatr® the full subcategories of PNmatr and PNmatr® where
the objects are restricted to saturated PNmatrices.

WADT2022@Aveiro 18



Saturation and the w-power

We say a PNmatrix M is saturated whenever >y =, that is, whenever
' >m Adffthereis 6 € A such that T g 8.
Every sound set x set-rule can be refined to a sound set x fmla-rule,
: The 2-valued Nmatrices Myee, My, Mg, and the 4-valued are all saturated

Let SPNmatr and SPNmatr® the full subcategories of PNmatr and PNmatr® where
the objects are restricted to saturated PNmatrices.

PNmatr PNmatr’
w-power w-power
SPNmatr SPNmatr’

w-power of M be M¥ = (V¥,.,,, D¥) with

©w(517 see ,S].,..,) — {5 e V¥: S(l) € ©M(Sl(i)7- . Sk(l))}
Facts:

o We can always saturate a given PNmatrix: Fy = Fye (NOt unique, sometimes enough
finite power)

¢ By doing so we characterize the smallest set x set-companion: >y = >,

WADT2022@Aveiro 18



From logics to PNmatrices: Lindenbaum PNmatrix?

PNmatrix semantics

/\

Semantical units: PNmatrices T Logics: set X set/Tarskioan-consequence relations

\/

set X set -'Lindenbaum PNmatrix’?
w-power inclusion set X fmla-fragment smallest set X set companion

PNmatrix semantics

/\

Semantical units: ‘saturated’ PNmatrices Logics: set X fm|a/Sco’r’rion—consequence relations

\/

set X fmla -'Lindenbaum PNmaftrix’?

Well....

WADT2022@Aveiro 19



Partiality allows for a badly behaved sum

Let M = {(X,M;) : ¢ € I} be aset of PNmatrices, each M; = (V;, D;, ;).
The sum of M is the PNmatrix (£, M) where M = (V, D, -g) and
vV =UJ{i} x V)

iel

D = | J{i} x D)

el

. . {i}x@M.(wl,...,wn)) fi=41=---=1,
Cgp((21,T1)sves (Tn,x = ¢
forn € Ngand ¢ € (™),
(2,pM) is a coproduct of M in in all the infroduced PNmatrix categories PNmatr,
PNmatr’, SPNmatr and SPNmatr’.
Hence,
[ ] Mult(M;) C Mult(©M)
il
Perhaps surprisingly, however, it may happen that Mult(@M) # (;c; Mult(M;).
A sufficient condition for the equality to hold is that the ¥ contains atf least a connective with
arity > 1.
In general we only have that Mult(p.M) is the smallest logic given by a single PNmatrix that
contains all the logics > M.
WADT2022@Aveiro 20



Partiality allows for gathering the Lindenbaum bundle into a
Pmatrix

ForT' C Lx(P),let My = (Lx(P),-,T).

Lindenbaum bundle
Lind™"*((Z,>)) = {Mr : T ¥ (Lx(P) \ I} Maximal set x set-theories
Lind*"8((X,+)) = {Mr : T = I'" # Lx(P)} All set x fmla-theories

Lindenbaum Pmatrix
Let Lindg‘ : Mult — PNmatr’

Lind@"* ((2,>)) := @Lind™"((Z, >))
and Lindg, : Sing — SPNmatr’
Lind®((2,F)) := GLind ™8 ((2, 1))

WADT2022@Aveiro
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Galois connection between PNmatr’ and Mult°P

Consider the functors, in this case, also lattice morphisms
Mult : PNmatr’ — Mult such that Mult((2, M)) = (X, >u)
Sing : SPNmatr® — Sing such that Sing((Z, M)) = (X, Fu)
Facts:

e LindP"((2,1>)) C (B, Mp) iff Mult((Zo, Mo)) C (%, >)

o Lind¥((2, 1)) C (So,Mp) iff Sing({Zo, Mo)) C (S, F)

PNmatr PNmatr’ T Mult°P
P
/ e /
“/ f/ L1n(l® "J
w-power | w-power “ set X fmla-fragment |
SPNmatr SPNmatr’ T Sing°P
-
Lin(lzg‘g

WADT2022@Aveiro
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Can we do better?

PNmatr PNmatr® . T Mult°P
/ / -_ O OO /
/ . It /
| “‘s Lm(l%‘;
w-power | w-power | set X fmla-fragment : -
\ Y
SPNmatr SPNmatr’ T Sing©°P
P —

sing

IAimlﬂ;

Is there Adjunction between PNmatr and Mult? How to associate a logic with a
PNmatrix such that there is a unique morphism to every PNmatrix characterizing
a weaker logic? (PNmatr® dealt with unicity)

Is the existency of strict morphisms is sufficient to detect if PNmatrices define the
same logic? No! This is big change from logical matrices... can we improve on
that?
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? ?
Problems >y, =, and Fy, =k,

Example
ML (T
(@) (@) @) g
0 1 0 1 0 1 1 0
1 0 1 0 1 0 T 0.T
T| 0T T| 1,T T| 0,1, T T 1:T
Facts:

BVal(M;) = BVal(Mz) = BVal(Ms) = BVal(M,)

o Dy, =Dy, =DMy =Dm, ANA i, =k, =Fyms=Fw,

My C M3, My T M3

My £ Mz, Mz Z My and M3 [Z My

My, C M3 and Mg is a quotient of My.

Given arbitrary finite (P)Nmatrices the problem I—MI;I—M2 is undecidable.
In the multiple-conclusion setting it is still open but we suspect that the same holds for
deciding >, =>Ms, .
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What changes regarding strict morphisms and quotients
Over matrices

e Kernels of strict morphisms between matrices are congruences compatible with
the set of designated elements and surjective strict morphisms (and quotients)
preserve the logic (both single and muiltiple)

e For finite reduced ¥-matrices M; and Ms,

D> My =DM, there are strict morphisms fi2 : My — My and fz1 : My — M,
(Shoesmith and Smiley 1978)
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What changes regarding strict morphisms and quotients

Over matrices

Kernels of strict morphisms between matrices are congruences compatible with
the set of designated elements and surjective strict morphisms (and quoftients)
preserve the logic (both single and multiple)

For finite reduced X-matrices M; and M,

D>M; =DM, there are strict morphisms f12 : M; — My and fa1 : My — My
(Shoesmith and Smiley 1978)

Over PNmaftrices

Any quotient of a PNmatrix by an equivalence relation compatible with the set
of designated values is sfill a PNmatrix and induces a strict morphism (and vice-
versa)

A strict (surjective or not) morphism f : M; — My only implies that >y, T,
Strict morphisms (and quotients) of PNmatrices may generate stronger logics

Of course that if there are strict morphisms fi2 : M; — My and fa1 : My — Mj
then >y, =>n, but the other direction fails

Perhaps a local explanation for >y, =>u, sSoundness is Not possible
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Full circle: general semantics for combined logics

Strict product of PNmatrices

Given X;- and ¥,-PNmatrices My = (A1, -1, D1) and My = (Asg, -5, D2),
letU; = A; \ Dy and Uy = A \ Do.

Their strict product is the X1 U 35-PNmatrix

My * My = (Aj2, 12, D12)
where

Ajp = (D1 x D) U (Uy x Us) D12 = D1 X D,

{(a,b) € A a E@l(al,...,ak)} if c € 21\22

{(a,b)€A12:b6©2(b1,...,bk)} |f6622\21

{(a,b) € Ao ta €©1(a1,...,ak)
Ondb6©2(b1,...,bk)} ifCEElﬂzlz

Note that ©;5((a1,b1), ..., (ak, bx)) =0
if©1(a1y...,ak) C Dy and ©;(a1,...,ar) C Us Or vice versa.

©12((a1’ bl)a ) (ak, bk)) =

WADT2022@Aveiro 26



Facts about strict-product

o M; x My is saturated whenever M; and M, are

e (31,M1) ® (32,M2) = (21 U Xa,M; x My) is the product in all the infroduced
PNmatrix categories PNmatr, PNmatr’, SPNmatr and SPNmatr”.

- m(x,y) = z and wa(x, y) = y are strict-morphisms
= Val(M; * Ma) = Val(M7;*“>2) N Val(M5*“>2).

* If v € Val(M; % My) then (7, o v) € Val(M,>*">?)
» v1 € Val(M7*Y>?), vy € Val(M3*“>2), and vy (¢) € D, iff va(p) € D, for every
A € Lx,us, (P).then vy x vy € Val(My * My) with v * v2(p) = (v1(@),v2(p))

Modular semantics for combined logics by joining calculi

Product on the semantical side, coproduct of logics

I>M1 L I>M2 = I>M1*M2

If Ml; and My saturated then by, U by, = vy s

If either My or My not saturated it may happen that Fy, U Fy, © B s,

=

Inany case, Fy, U Py, = Fuy sy
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LeT 2/\ :
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= O >

Back to combining AND and OR

2\/:

(== en) Nen]
=
= O <
=l =]

|
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Back to combining AND and OR

A0 1 vVio 1
Let 2, ¢ 0|0 O 2y : 0|0 1
1/0 1 11 1
IN set X set:
2, % 2,=2,y is the AVv-fragment of classical Boolean matrix and indeed the rules
PAQ pANg P a9 P _49 L\/qoxiomoﬂze >
P q PAq pVqg pVg p,q AVE
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Back to combining AND and OR

A0 1 vVio 1
Let 25 0|0 O 2y 0|0 1
110 1 171 1
In set X set:
2, x 2,=2,y iIs the Av-fragment of classical Boolean matrix and indeed the rules
pPAQ pAQ P q@ P 4 PV yi '
> 7 oha. pvd Pvd oo axiomatize >z, ., .
In set x fmla:
2, is saturated but 2., is not. y v v

l_/\\/w :|_2/\*2“V) g}_E/\v Ond 2/\\/ g 2/\ * 2@ Where

27v = (p(N), -%, {N}) with
fX=Y =
XVyY = XUY and XAxY = N | , N
p(N) otherwise
Fact:

Classical logic can be axiomatized joining axiomatizations for each of fragments with
a single connective in set x set but not in set x fmla.
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