PNmatrices at work

PNmatrix = Partial non-deterministic matrix



Ø

11

Ø

11

11

11

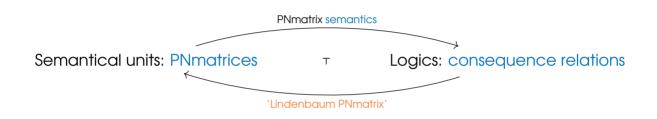
01

Sérgio Marcelino and Carlos Caleiro

SQIG - Instituto de Telecomunicações Departmento de Matemática IST - U Lisboa, Portugal

This work is funded by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/50008/2020.

Plan: PNmatrices and logics



PNmatrices generalize logical matrices by enriching them with partiality and non-determinism.

Good for compositionality results!

We are after correspondence between operations on <u>logics</u> and operations on PNmatrices.

Basic concepts

signatures	$\begin{split} \Sigma &: \mathbb{N}_0 \text{-indexed set of connectives} \\ \Sigma_1 \cap \Sigma_2 &= \{\Sigma_1^{(n)} \cap \Sigma_2^{(n)}\}_{n \in \mathbb{N}_0} \\ \Sigma_1 \cup \Sigma_2 &= \{\Sigma_1^{(n)} \cup \Sigma_2^{(n)}\}_{n \in \mathbb{N}_0} \\ \Sigma_1 \setminus \Sigma_2 &= \{\Sigma_1^{(n)} \setminus \Sigma_2^{(n)}\}_{n \in \mathbb{N}_0} \end{split}$						
Propositional languages	$L=L_{\Sigma}(P)$ given by y	$\psi ::= P \mid extsf{@}(\psi, \dots, \psi) \ extsf{for } extsf{@} \in \Sigma$					
substitutions	$\sigma:P ightarrow L$, $arphi(ec{\psi})=arphi(ec{\psi})$	$(ec{p})^{\sigma}$ when $\sigma(ec{p})=ec{\psi}$					
single-conclusion rules set \times fmla	$rac{\Gamma}{arphi}$ with $\Gamma, \{arphi\} \subseteq L$	Examples: $\frac{p, p \rightarrow q}{p \rightarrow (q \rightarrow p)}$, $\frac{p, p \rightarrow q}{q}$					
multiple-conclusion rules set \times set	$rac{\Gamma}{\Delta}$ with $\Gamma,\Delta\subseteq L$	Examples: $\frac{p, p \rightarrow q}{p \rightarrow (q \rightarrow p)}$, $\frac{p, p \rightarrow q}{q}$, $\frac{p \lor q}{p, q}$					

Single- and multiple-conclusion logics

A Scottian consequence relation (set \times set-cr) is a $\triangleright \subseteq \wp(L) \times \wp(L)$ satisfying:

 $\Gamma \rhd \Delta$ if $\Gamma \cap \Delta \neq \emptyset$ (overlap)

 $\Gamma \cup \Gamma' \rhd \Delta \cup \Delta'$ if $\Gamma \rhd \Delta$ (dilution)

 $\Gamma \triangleright \Delta$ if $\Gamma \cup \Omega \triangleright \overline{\Omega} \cup \Delta'$ for every partition $\langle \Omega, \overline{\Omega} \rangle$ of some $\Theta \subseteq L$ (*cut for sets*)

 $\Gamma^{\sigma} \triangleright \Delta^{\sigma}$ for any substitution $\sigma: P \rightarrow L$ if $\Gamma \triangleright \Delta$ (substitution invariance)

Given a set \times set-cr \triangleright , its single conclusion fragment $\vdash_{\triangleright} = \triangleright \cap (\wp(L) \times L)$ is a Tarskian consequence relation (set \times fmla-cr) satisfying:

 $\Gamma \vdash \varphi \text{ if } \varphi \in \Gamma \text{ (reflexivity),}$

 $\Gamma \cup \Gamma' \vdash \varphi$ if $\Gamma \vdash \varphi$ (monotonicity),

 $\Gamma \vdash \varphi$ if $\Delta \vdash \varphi$ and $\Gamma \vdash \psi$ for every $\psi \in \Delta$ (*transitivity*)

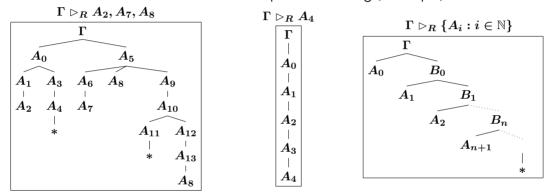
 $\Gamma^{\sigma} \vdash \varphi^{\sigma}$ for any substitution $\sigma: P \to L$ if $\Gamma \vdash \varphi$ (substitution invariance)

- A set of set \times set-rules R is a basis for \triangleright_{R} , the smallest set \times set-cr containing R.
- A set of set \times fmla-rules R is a basis for \vdash_R , the smallest set \times fmla-cr containing R.

Multiple-conclusion calculi and tree-proofs

A *calculus* is a set of rules (schema) $R \subseteq \wp(L) \times \wp(L)$.

Proofs can be arboreal as rules with a conclusion set with more than a formula impose branching (case split).



Axiomatization as basis for the logic \triangleright_R is the smallest set \times set-cr containing R, R is a proper basis for \triangleright_R

Also here, set \times fmla-axiomatizations are particular cases of set \times set-axiomatizations.

If R are all set \times fmla then $\triangleright_R = \triangleright_{\vdash_R}$.

Posetal categories Sing and Mult

Mult Objects: $\langle \Sigma, \rhd \rangle$ where \rhd is a set \times set-cr Morphisms: $\langle \Sigma_1, \rhd_1 \rangle \sqsubseteq \langle \Sigma_2, \rhd_2 \rangle$ if $\Sigma_1 \subseteq \Sigma_2$ and $\rhd_1 \subseteq \rhd_2$ Sing Objects: $\langle \Sigma, \vdash \rangle$ where \vdash is a set \times fmla-cr Morphisms: $\langle \Sigma_1, \vdash_1 \rangle \sqsubseteq \langle \Sigma_2, \vdash_2 \rangle$ if $\Sigma_1 \subseteq \Sigma_2$ and $\vdash_1 \subseteq \vdash_2$ Eacts:

- Both are complete lattices.
- Sing is embeddable in Mult by sending (Σ, ⊢) to (Σ, ⊳⊢) where ⊳⊢ is the smallest set × set-cr such that ⊢⊆⊳. That is,

 $\Gamma \vartriangleright_{\vdash} \Delta$ iff there is $\delta \in \Delta$ such that $\Gamma \vdash \delta$

• Sing is a full reflective subcategory of Mult

smallest set	×fmla	-companion					
Mult	T	Sing					
set × fmla-fragment							

Joins in Mult and Sing

Being complete lattices both Mult and Sing bot have joins. Given two logics $\langle \Sigma_1, \alpha_1 \rangle$ and $\langle \Sigma_2, \alpha_2 \rangle$ of the same type, their join is

 $\langle \Sigma_1, \propto_1
angle \sqcup \langle \Sigma_2, \propto_2
angle = \langle \Sigma_1 \cup \Sigma_2, \propto_1 \bullet \propto_2
angle$

where $x_1 \bullet x_2$ is the smallest cr of the same type over $L_{\Sigma_1 \cup \Sigma_2}(P)$ containing x_1 and x_2 .

Fact:

```
For sets of set 	imes set-rules R_1 and R_2
```

 $\triangleright_{R_1} \bullet \triangleright_{R_2} = \triangleright_{R_1 \cup R_2}$

For sets of set imes fmla-rules R_1 and R_2

 $\vdash_{R_1} \bullet \vdash_{R_2} = \vdash_{R_1 \cup R_2}$

That is,

the join of two logics is axiomatized by joining axiomatizations for each

Examples of combining logics by joining their calculi

• Language extensions

Adding new connectives to a logic without imposing anything about them Given \rhd and \vdash over $\Sigma_0\subseteq\Sigma$ let \rhd^Σ

 $\Gamma \vartriangleright^{\boldsymbol{\Sigma}} \Delta \text{ iff }$

$\begin{array}{l} \Gamma_0 \rhd \Delta_0 \text{ for some } \Gamma_0 \subseteq L_{\Sigma_0}(P), \Delta_0 \subseteq L_{\Sigma_0}(P), \sigma: P \to L_{\Sigma}(P) \text{ with } \Gamma_0^{\sigma} \subseteq \Gamma, \Delta_0^{\sigma} \subseteq \Delta\\ \langle \Sigma_0, \rhd^{\Sigma} \rangle = \langle \Sigma_0, \rhd \rangle \bullet \langle \Sigma, \rhd_{\text{norules}} \rangle \end{array}$

Examples of combining logics by joining their calculi

• Language extensions

Adding new connectives to a logic without imposing anything about them Given ho and \vdash over $\Sigma_0 \subseteq \Sigma$ let ho^{Σ}

 $\Gamma \vartriangleright^{\Sigma} \Delta$ iff

 $\begin{array}{l} \Gamma_0 \rhd \Delta_0 \text{ for some } \Gamma_0 \subseteq L_{\Sigma_0}(P), \Delta_0 \subseteq L_{\Sigma_0}(P), \sigma: P \to L_{\Sigma}(P) \text{ with } \Gamma_0^{\sigma} \subseteq \Gamma, \Delta_0^{\sigma} \subseteq \Delta\\ \langle \Sigma_0, \rhd^{\Sigma} \rangle = \langle \Sigma_0, \rhd \rangle \bullet \langle \Sigma, \rhd_{\mathsf{norules}} \rangle \end{array}$

Combining classical AND and OR

Let $R_{\wedge\vee}$ be formed by the set imes set-rules

$$\begin{array}{c|c} \frac{p \wedge q}{p} & \frac{p \wedge q}{q} & \frac{p}{p \vee q} & \frac{p \vee p}{p} \\ \\ \hline \frac{p \wedge q}{q} & \frac{p q}{p \wedge q} & \frac{p \vee q}{q \vee p} & \frac{p \vee (q \vee r)}{(p \vee r) \vee q} \end{array}$$

Examples of combining logics by joining their calculi

• Language extensions

Adding new connectives to a logic without imposing anything about them Given \rhd and \vdash over $\Sigma_0\subseteq\Sigma$ let \rhd^Σ

 $\Gamma \vartriangleright^{\Sigma} \Delta$ iff

 $\begin{array}{l} \Gamma_0 \rhd \Delta_0 \text{ for some } \Gamma_0 \subseteq L_{\Sigma_0}(P), \Delta_0 \subseteq L_{\Sigma_0}(P), \sigma: P \to L_{\Sigma}(P) \text{ with } \Gamma_0^{\sigma} \subseteq \Gamma, \Delta_0^{\sigma} \subseteq \Delta\\ \langle \Sigma_0, \rhd^{\Sigma} \rangle = \langle \Sigma_0, \rhd \rangle \bullet \langle \Sigma, \rhd_{\mathsf{norules}} \rangle \end{array}$

• Combining classical AND and OR

Let $R_{\wedge\vee}$ be formed by the set imes set-rules

$$\begin{array}{c|c} \frac{p \wedge q}{p} & \frac{p \wedge q}{q} & \frac{p}{p \vee q} & \frac{p \vee p}{p} \\ \\ \frac{p \wedge q}{q} & \frac{p \quad q}{p \wedge q} & \frac{p \vee q}{q \vee p} & \frac{p \vee (q \vee r)}{(p \vee r) \vee q} \end{array}$$

• Fusion of modal logics

Seminal example and well understood via gluing Kripke frames for each of the combined logic.

Our initial <u>motivation</u> for considering PNmatrices was the difficulty in combining two given semantics to capture the effect of joining axiomatizations

Starting point: Logical matrices

Given signature $\Sigma = {\Sigma}_{n \in \mathbb{N}}$ and fixed $L = L_{\Sigma}(P)$ Logical matrix $\mathbb{M} = \langle V, \cdot_{\mathbb{M}}, \mathbf{D} \rangle$ where $\langle V, \cdot_{\mathbb{M}} \rangle$ is an algebra of truth-values set endowed with operations $\mathbb{O}_{\mathbb{M}} : V^n \to V$ for $\mathbb{O} \in \Sigma^{(n)}$ $D \subseteq V$ is the set of designated elements corresponding to 1 Val(\mathbb{M}) Valuations over \mathbb{M} are $v : L_{\Sigma}(P) \to V$ satisfying

 $v(\mathbb{O}(arphi_1,\ldots,arphi_k))=\mathbb{O}_{\mathbb{M}}(v(arphi_1),\ldots,v(arphi_k))$

$\frac{\Gamma \vartriangleright_{\mathbb{M}} \Delta}{\mathsf{iff}}$

for every v over \mathbb{M} , $v(\Gamma) \subseteq D$ implies $v(\Delta) \cap D \neq \emptyset$.

Let $\vdash_{\mathbb{M}} = \vdash_{\triangleright_{\mathbb{M}}}$.

Finite matrices \mathbb{M} induce locally tabular logics, that is, $L_{\Sigma}(p_1, \ldots, p_k) / \dashv \vdash$ is <u>finite</u>. Note that there is no finite matrix \mathbb{M} such that $\rhd_{\mathbb{M}} = \rhd_{R_{\text{norules}}}$ nor $\vdash_{\mathbb{M}} = \vdash_{R_{\text{norules}}}!$

As $L_{\Sigma}(p_1,\ldots,p_k)/\dashv \vdash_{R_{\operatorname{norules}}} = L_{\Sigma}(p_1,\ldots,p_k)$ is infinite

WADT2022@Aveiro

Extending truth-functionality: non-determinism and partiality

A Σ -PNmatrix is a tuple $\mathbb{M}=\langle V,\cdot_{\mathbb{M}},D
angle$

- V is a non-empty set (of *truth-values*)
- $D \subseteq V$ (the set of *designated* truth-vales)
- $\mathbb{O}_{\mathbb{M}}: V^n \to \wp(V)$ for each $c \in \Sigma^{(n)}$ from Baaz, Lahav & Zamansky's `Finite-valued semantics for canonical labelled calculi', JAR 2013

Particular cases:

Total and deterministic: Matrix If $\mathbb{G}_{\mathbb{M}}: V^n \to \{\{a\}: a \in V\}$

Total: Nmatrix If $\mathbb{G}_{\mathbb{M}}: V^n o \wp(V) \setminus \{ \emptyset \}$

from Avron & Lev 2005 `Non-deterministic multiple-valued structures', JAR 2013

Deterministic: Pmatrix If $\mathbb{O}_{\mathbb{M}}: V^n \to \{\{a\}: a \in V\} \cup \{\emptyset\}$

Logics of PNmatrices

A Σ -PNmatrix is a tuple $\mathbb{M}=\langle V,\cdot_{\mathbb{M}},D
angle$

- V is a non-empty set (of *truth-values*)
- $D \subseteq V$ (the set of *designated* truth-vales)
- $\bigotimes_{\mathbb{M}}: V^n \to \wp(V)$ for each $c \in \Sigma^{(n)}$ from Baaz, Lahav & Zamansky's `Finite-valued semantics for canonical labelled calculi', JAR 2013
- $\begin{array}{l} \mathrm{Val}(\mathbb{M}) \ \, \mathrm{Valuations} \ \mathrm{over} \ \mathbb{M} \ \mathrm{are} \ v: L_{\Sigma}(P) \to V \ \mathrm{satisfying} \\ v(\mathbb{O}(\varphi_1, \dots, \varphi_k)) \in \mathbb{O}_{\mathbb{M}}(v(\varphi_1), \dots, v(\varphi_k)) \end{array}$

$\Gamma \rhd_{\mathbb{M}} \Delta$

iff for every v over \mathbb{M} , $v(\Gamma) \subset D$ implies $v(\Delta) \cap D \neq \emptyset$.

- non-determinism gives a menu of possibilities for extending the formulas, valuations are not determined by the values over the variables!
- valuations live inside (total) subNmatrices, partiality forbids valuations combining incompatible elements
- logics of finite PNmatrices are <u>not</u> necessarily locally tabular

PNmatrices are nice!

- Almost(!) every logic can be characterized by a single PNmatrix enough for signature to contain a connective of arity > 1
- Natural semantics for logical strengthenings and combined logics
- Many non-finitely valued logics have <u>finite</u> PNsemantics
- Logics of finite PNmatrices are still finitary, SAT in NP, decision in coNP
- Effective bridge with well behaved proof-theory: logics of finite PNmatrices still can be axiomatized by finite analytical **set** × **set**-calculi.

Some 2-valued Nmatrices you should know

None of the logics induced by the following Nmatrices is induced by a finite matrix (or even by a finite set of finite matrices.

$$\begin{split} \mathbb{M}_{\text{free}} & \frac{\mathbb{O}_{\text{free}}}{1} \quad \frac{0}{0, 1} \quad \frac{1}{0, 1} \\ 1 & 0, 1 \quad 0, 1 \end{split} \Rightarrow_{\mathbb{M}_{\text{free}}} \text{ is axiomatized by the emptyset of rules} \\ \mathbb{M}_{\text{mp}} & \frac{\rightarrow_{\text{mp}}}{0} \quad \frac{0}{0, 1} \quad \frac{1}{0, 0, 1} \\ 1 & 0 \quad 0, 1 \end{aligned} \Rightarrow_{\mathbb{M}_{\text{mp}}} \text{ is axiomatized by modus ponens } \frac{p, p \rightarrow q}{q} \\ \mathbb{M}_{\text{sq}} & \frac{0}{\mathbb{M}_{\text{sq}}} \quad \frac{1}{0, 1} \quad >_{\mathbb{M}_{\text{sq}}} \text{ is axiomatized by } \Box \text{-generalization } \frac{p}{\Box p} \end{split}$$

Non-determinism easily captures language extensions

Adding new connectives to a logic without imposing anything on them Given Σ_0 -PNmatrix $\mathbb{M} = \langle V, \cdot_{\mathbb{M}}, D \rangle$ let $\mathbb{M}^{\Sigma} = \langle V, \cdot_{\mathbb{M}^{\Sigma}}, D \rangle$ with

$$\mathbb{C}(a_1,\ldots,a_k) = egin{cases} \mathbb{C}_{\mathbb{M}}(a_1,\ldots,a_k) & ext{if } \mathbb{C} \in \Sigma_0 \ V & ext{otherwise} \end{cases}$$

Facts:

- $\bullet \hspace{0.1 cm} \triangleright_{\mathbb{M}^{\Sigma}} = \triangleright_{\mathbb{M}}^{\Sigma} \hspace{0.1 cm} \text{and} \hspace{0.1 cm} \vdash_{\mathbb{M}^{\Sigma}} = \vdash_{\mathbb{M}}^{\Sigma}$
- If general, if $\Sigma \setminus \Sigma_0$ contains a 0-ary connective then there is no single matrix characterizing \rhd^{Σ} or \vdash^{Σ}
- If general, if $\Sigma \setminus \Sigma_0$ contains a *n*-ary connective with n > 0 then there is no <u>finite set of finite</u> matrices characterizing \triangleright^{Σ} or \vdash^{Σ}

Adding axioms

There is a general recipe that generates <u>semantics</u> for axiomatic extensions by preimages by strict morphisms of the original semantics (or rexpansions), yielding

- a <u>denumerable semantics</u> (but quite syntactic) for axiomatic extensions of logics with <u>denumerable</u> PNmatrix semantics, including intuitionistic and every modal logics (remember that modus ponnens and generalization can be captured by a 2-valued Nmatrix)
- a finiteness preserving semantics for a wide range of base logics and axioms satisfying certain shapes

Like the example in the first slide:

3 =	$= \langle \{0, \\ \rightarrow_{\mathbb{R}} \}$						\mathbb{B}_{A}	$x = \langle \{00\} \rangle$	0, 01, 10,	$11\},$	${10,1}$	$11\},\cdot_{\mathbb{P}}$	$_{Ax}\rangle$
	\overrightarrow{B} 0 1	1	1		impose p -	$(\neg p \rightarrow \neg q)$	$\rightarrow_{\mathbb{B}_{Ax}}$	00	01	10	11		_
	T	0	1	_		\longrightarrow	00	10	10	10	Ø	00	00
							01	10	10,11	10	11	01	10
							10	00,01	00,01	10	Ø	10	00

11 Ø

01

Ø 11

TB

□^BAx 00,01 10,11 00,01

11

11

Finite PNmatrices help in detecting low complexity logics

A logic decidable in **PTIME**

When apply to the following Nmatrix the algorithm generating analytical set \times setaxiomatization we can observe that that this logic is decidable in **PTIME** since the generated rules are all of type set \times fmla (no branching needed)

This Nmatrix was introduced in Avron&Ben-Naim&Konikowska (2007) modelling the reasoning of a processor which collects partial information from different classical sources and it was previously unknown to be of low complexity.

Categories of PNmatrices PNmatr and $PNmatr^{\flat}$

A function $f: V_1 \to V_2$ is a strict morphism between $\mathbb{M}_1 = \langle \Sigma_1, \cdot_{\mathbb{M}}, D_1 \rangle$ and $\mathbb{M}_2 = \langle \Sigma_2, \cdot_{\mathbb{M}}, D_2 \rangle$ if $\Sigma_2 \subseteq \Sigma_1$ and satisfies $f^{-1}(D_2) = D_1$ and for $\mathbb{C} \in \Sigma_2^n$,

 $f(\mathbb{O}_{\mathbb{M}_1}(x_1,\ldots,x_n))\subseteq \mathbb{O}_{\mathbb{M}_2}(f(x_1),\ldots,f(x_n))$

This extends the notion of strict morphisms for matrices where one demands $f(\mathbb{G}(x_1,\ldots,x_n)) = \mathbb{G}_{\mathbb{M}}(f(x_1),\ldots,f(x_n))$

PNmatr:

```
Objects: \langle \Sigma, \mathbb{M} \rangle with \mathbb{M} a PNmatrix over \Sigma
```

Morphisms: strict morphisms between PNmatrices

 \mathbf{PNmatr}^{\flat} :

Objects: $\langle \Sigma, \mathbb{M} \rangle$ with \mathbb{M} a PNmatrix over Σ

Morphisms: $\langle \Sigma_1, \mathbb{M}_1 \rangle \sqsubseteq \langle \Sigma_2, \mathbb{M}_2 \rangle$ iff $\Sigma_2 \subseteq \Sigma_1$ and there is some strict morphism between \mathbb{M}_1 and \mathbb{M}_2 . Equivalently, if \mathbb{M}_1 is a rexpansion of \mathbb{M}_2 (Avron 2020)

Facts:

- \mathbf{PNmatr}^{\flat} is a posetal category
- Q transforms products in meets and coproducts in joins

Saturation and the ω -power

We say a PNmatrix \mathbb{M} is saturated whenever $\rhd_{\mathbb{M}} = \rhd_{\vdash_{\mathbb{M}}}$, that is, whenever $\Gamma \rhd_{\mathbb{M}} \Delta$ iff there is $\delta \in \Delta$ such that $\Gamma \vdash_{\mathbb{M}} \delta$. Every sound set \times set-rule can be refined to a sound set \times fmla-rule. Example: The 2-valued Nmatrices \mathbb{M}_{free} , \mathbb{M}_{mp} , \mathbb{M}_{sq} and the 4-valued are all saturated

Saturation and the ω -power

We say a PNmatrix \mathbb{M} is saturated whenever $\triangleright_{\mathbb{M}} = \triangleright_{\vdash_{\mathbb{M}}}$, that is, whenever $\Gamma \triangleright_{\mathbb{M}} \Delta$ iff there is $\delta \in \Delta$ such that $\Gamma \vdash_{\mathbb{M}} \delta$. Every sound set \times set-rule can be refined to a sound set \times fmla-rule. Example: The 2-valued Nmatrices \mathbb{M}_{free} , \mathbb{M}_{mp} , \mathbb{M}_{sq} and the 4-valued are all saturated

Let SPNmatr and SPNmatr^{\flat} the full subcategories of PNmatr and PNmatr^{\flat} where the objects are restricted to saturated <u>PNmatrices</u>.

Saturation and the ω -power

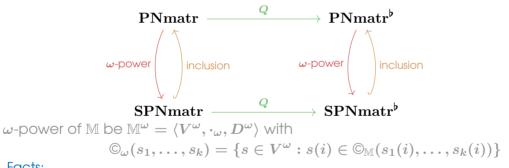
We say a PNmatrix M is saturated whenever $\triangleright_{M} = \triangleright_{\vdash_{M}}$, that is, whenever

 $\Gamma \succ \Delta$ iff there is $\delta \in \Delta$ such that $\Gamma \vdash_{\mathbb{M}} \delta$.

Every sound set \times set-rule can be refined to a sound set \times fmla-rule.

Example: The 2-valued Nmatrices \mathbb{M}_{tree} , \mathbb{M}_{sq} and the 4-valued are all saturated

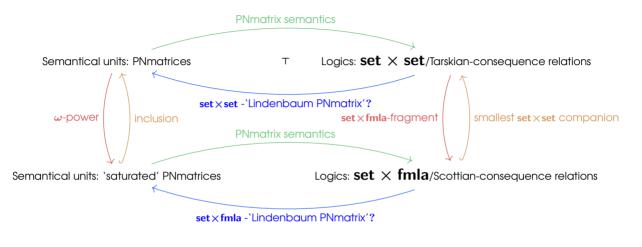
Let SPNmatr and SPNmatr^b the full subcategories of PNmatr and PNmatr^b where the objects are restricted to saturated PNmatrices.



Facts:

- We can always saturate a given PNmatrix: $\vdash_{\mathbb{M}} = \vdash_{\mathbb{M}^{\omega}}$ (not unique, sometimes enough finite power)
- By doing so we characterize the smallest set \times set-companion: $\triangleright_{\mathbb{M}^{\omega}} = \triangleright_{\vdash_{\mathbb{M}}}$

From logics to PNmatrices: Lindenbaum PNmatrix?



Well...

Partiality allows for a badly behaved sum

Let $\mathcal{M} = \{ \langle \Sigma, \mathbb{M}_i \rangle : i \in I \}$ be a set of PNmatrices, each $\mathbb{M}_i = \langle V_i, D_i, \cdot_{\mathbb{M}_i} \rangle$. The sum of \mathcal{M} is the PNmatrix $(\Sigma, \oplus \mathcal{M})$ where $\oplus \mathcal{M} = \langle V, D, \cdot_{\oplus} \rangle$ and $V = \bigcup_{i \in I} (\{i\} \times V_i)$ $D = \bigcup_{i \in I} (\{i\} \times D_i)$ $\mathbb{O}_{\oplus}((i_1, x_1), \dots, (i_n, x_n)) = \begin{cases} \{i\} \times \mathbb{O}_{\mathbb{M}_i}(x_1, \dots, x_n)) & \text{if } i = i_1 = \dots = i_n \\ \emptyset & \text{otherwise} \end{cases}$

for $n \in \mathbb{N}_0$ and $c \in \Sigma^{(n)}$.

 $(\Sigma, \oplus \mathcal{M})$ is a <u>coproduct</u> of \mathcal{M} in in all the introduced PNmatrix categories PNmatr, PNmatr^b, SPNmatr and SPNmatr^b.

Hence,

$\prod_{i\in I} \operatorname{Mult}(\mathbb{M}_i) \subseteq \operatorname{Mult}(\oplus \mathcal{M})$

Perhaps surprisingly, however, it may happen that $\operatorname{Mult}(\oplus \mathcal{M}) \neq \bigcap_{i \in I} \operatorname{Mult}(\mathbb{M}_i)$.

A sufficient condition for the equality to hold is that the Σ contains at least a connective with arity > 1.

In general we only have that $Mult(\oplus M)$ is the smallest logic given by a single PNmatrix that contains all the logics $\triangleright M_i$.

WADT2022@Aveiro

Partiality allows for gathering the Lindenbaum bundle into a **Pmatrix**

For $\Gamma \subset L_{\Sigma}(P)$, let $\mathbb{M}_{\Gamma} = \langle L_{\Sigma}(P), \cdot, \Gamma \rangle$.

Lindenbaum bundle

 $\operatorname{Lind}^{\operatorname{mult}}(\langle \Sigma, \rhd \rangle) = \{ \mathbb{M}_{\Gamma} : \Gamma \not \rhd (L_{\Sigma}(P) \setminus \Gamma) \}$ Maximal set \times set-theories $\operatorname{Lind}^{\operatorname{sing}}(\langle \Sigma, \vdash \rangle) = \{\mathbb{M}_{\Gamma} : \Gamma = \Gamma^{\vdash} \neq L_{\Sigma}(P)\}$ All set \times fmla-theories

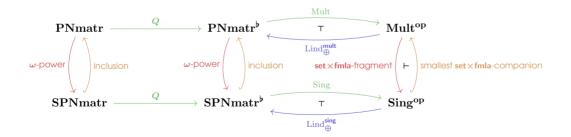
Lindenbaum Pmatrix

Let $\operatorname{Lind}_{\oplus}^m : \operatorname{Mult} \to \operatorname{PNmatr}^{\flat}$ $\operatorname{Lind}_{\oplus}^{\operatorname{\mathsf{mult}}}(\langle \Sigma, \rhd \rangle) := \oplus \operatorname{Lind}^{\operatorname{\mathsf{mult}}}(\langle \Sigma, \rhd \rangle)$ and $\operatorname{Lind}_{\oplus}^{s}: \operatorname{Sing} \to \operatorname{SPNmatr}^{\flat}$ $\operatorname{Lind}_{\oplus}^{\operatorname{sing}}(\langle \Sigma, \vdash \rangle) := \oplus \operatorname{Lind}^{\operatorname{sing}}(\langle \Sigma, \vdash \rangle)$

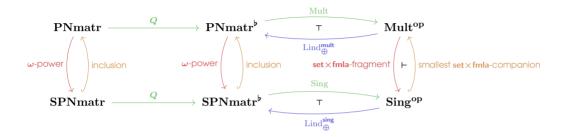
Galois connection between PNmatr^\flat and $\mathrm{Mult^{op}}$

Consider the functors, in this case, also lattice morphisms $\operatorname{Mult}: \operatorname{\mathbf{PNmatr}}^{\flat} \to \operatorname{\mathbf{Mult}}$ such that $\operatorname{Mult}(\langle \Sigma, \mathbb{M} \rangle) = \langle \Sigma, \rhd_{\mathbb{M}} \rangle$ $\operatorname{Sing}: \operatorname{\mathbf{SPNmatr}}^{\flat} \to \operatorname{\mathbf{Sing}}$ such that $\operatorname{Sing}(\langle \Sigma, \mathbb{M} \rangle) = \langle \Sigma, \vdash_{\mathbb{M}} \rangle$ Facts:

- $\operatorname{Lind}_{\oplus}^{\operatorname{mult}}(\langle \Sigma, \rhd \rangle) \sqsubseteq \langle \Sigma_0, \mathbb{M}_0 \rangle$ iff $\operatorname{Mult}(\langle \Sigma_0, \mathbb{M}_0 \rangle) \sqsubseteq \langle \Sigma, \rhd \rangle$
- $\operatorname{Lind}_{\oplus}^{\operatorname{sing}}(\langle \Sigma, \rhd \rangle) \sqsubseteq \langle \Sigma_0, \mathbb{M}_0 \rangle$ iff $\operatorname{Sing}(\langle \Sigma_0, \mathbb{M}_0 \rangle) \sqsubseteq \langle \Sigma, \vdash \rangle$



Can we do better?



- Is there Adjunction between PNmatr and Mult? How to associate a logic with a PNmatrix such that there is a unique morphism to every PNmatrix characterizing a weaker logic? (PNmatr^b dealt with unicity)
- Is the existency of strict morphisms is sufficient to detect if PNmatrices define the same logic? No! This is big change from logical matrices... can we improve on that?

Problems
$$\triangleright_{\mathbb{M}_1} \stackrel{?}{=} \triangleright_{\mathbb{M}_2}$$
 and $\vdash_{\mathbb{M}_1} \stackrel{?}{=} \vdash_{\mathbb{M}_2}$

Example

	$\neg_{\mathbb{M}_1}(x)$		$ eg _{\mathbb{M}_2}(x)$	$ \neg_{\mathbb{M}_{3}}(x)$		$\neg_{\mathbb{M}_4}(x)$
0	1	0	1	0 1	1	
$egin{array}{c} 1 \ T \end{array}$	0	1	0	1 0	T	0, T
T	0,T	T	1,T	$T \mid 0, 1, T$	T'	1, T

Facts:

- $\operatorname{BVal}(\mathbb{M}_1) = \operatorname{BVal}(\mathbb{M}_2) = \operatorname{BVal}(\mathbb{M}_3) = \operatorname{BVal}(\mathbb{M}_4)$
- $\bullet \ \triangleright_{\mathbb{M}_1} = \triangleright_{\mathbb{M}_2} = \triangleright_{\mathbb{M}_3} = \triangleright_{\mathbb{M}_4} \ \text{and} \ \vdash_{\mathbb{M}_1} = \vdash_{\mathbb{M}_2} = \vdash_{\mathbb{M}_3} = \vdash_{\mathbb{M}_4}$
- $\bullet \ \mathbb{M}_1 \sqsubseteq \mathbb{M}_3, \mathbb{M}_2 \sqsubseteq \mathbb{M}_3$
- $\bullet \ \mathbb{M}_1 \not\sqsubseteq \mathbb{M}_2, \mathbb{M}_2 \not\sqsubseteq \mathbb{M}_1 \text{ and } \mathbb{M}_3 \not\sqsubseteq \mathbb{M}_4$
- $\mathbb{M}_4 \sqsubseteq \mathbb{M}_3$ and \mathbb{M}_3 is a quotient of \mathbb{M}_4 .

Given arbitrary finite (P)Nmatrices the problem $\vdash_{\mathbb{M}_1} \stackrel{?}{=} \vdash_{\mathbb{M}_2}$ is <u>undecidable</u>. In the multiple-conclusion setting it is <u>still open</u> but we suspect that the same holds for deciding $\rhd_{\mathbb{M}_1} = \rhd_{\mathbb{M}_2}$.

What changes regarding strict morphisms and quotients

Over matrices

- Kernels of <u>strict morphisms</u> between matrices are <u>congruences</u> compatible with the set of <u>designated</u> elements and surjective strict morphisms (and <u>quotients</u>) preserve the logic (both single and multiple)
- For finite reduced Σ -matrices \mathbb{M}_1 and \mathbb{M}_2 ,

 $\triangleright_{\mathbb{M}_1} = \triangleright_{\mathbb{M}_2}$ IFF there are strict morphisms $f_{12} : \mathbb{M}_1 \to \mathbb{M}_2$ and $f_{21} : \mathbb{M}_2 \to \mathbb{M}_1$ (Shoesmith and Smiley 1978)

What changes regarding strict morphisms and quotients

Over matrices

- Kernels of <u>strict morphisms</u> between matrices are <u>congruences</u> compatible with the set of designated elements and surjective strict morphisms (and <u>quotients</u>) preserve the logic (both single and multiple)
- For finite $\underline{\text{reduced}}\ \Sigma\text{-matrices}\ \mathbb{M}_1 \text{ and } \mathbb{M}_2,$

```
\triangleright_{\mathbb{M}_1} = \triangleright_{\mathbb{M}_2} IFF there are strict morphisms f_{12} : \mathbb{M}_1 \to \mathbb{M}_2 and f_{21} : \mathbb{M}_2 \to \mathbb{M}_1
(Shoesmith and Smiley 1978)
```

Over PNmatrices

- Any <u>quotient</u> of a PNmatrix by an <u>equivalence</u> relation compatible with the set of designated values is still a PNmatrix and induces a strict morphism (and viceversa)
- A strict (surjective or not) morphism $f: \mathbb{M}_1 \to \mathbb{M}_2$ only implies that $\triangleright_{\mathbb{M}_2} \subseteq \triangleright_{\mathbb{M}_1}$
- Strict morphisms (and quotients) of PNmatrices may generate stronger logics
- Of course that if there are strict morphisms $f_{12} : \mathbb{M}_1 \to \mathbb{M}_2$ and $f_{21} : \mathbb{M}_2 \to \mathbb{M}_1$ then $\triangleright_{\mathbb{M}_1} = \triangleright_{\mathbb{M}_2}$ but <u>the other direction</u> fails
- Perhaps a local explanation for $\triangleright_{\mathbb{M}_1} = \triangleright_{\mathbb{M}_2}$ soundness is not possible

Full circle: general semantics for combined logics

Strict product of PNmatrices

Given Σ_1 - and Σ_2 -PNmatrices $\mathbb{M}_1 = \langle A_1, \cdot_1, D_1 \rangle$ and $\mathbb{M}_2 = \langle A_2, \cdot_2, D_2 \rangle$, let $U_1 = A_1 \setminus D_1$ and $U_2 = A_2 \setminus D_2$.

Their strict product is the $\Sigma_1 \cup \Sigma_2$ -PNmatrix

$$\mathbb{M}_1 \star \mathbb{M}_2 = \langle A_{12}, \cdot_{12}, D_{12} \rangle$$

where

 $A_{12} = (D_1 \times D_2) \cup (U_1 \times U_2) \qquad D_{12} = D_1 \times D_2$

$$\mathbb{O}_{12}((a_1, b_1), \dots, (a_k, b_k)) = \begin{cases} \{(a, b) \in A_{12} : a \in \mathbb{O}_1(a_1, \dots, a_k)\} & \text{ if } c \in \Sigma_1 \setminus \Sigma_2 \\ \{(a, b) \in A_{12} : b \in \mathbb{O}_2(b_1, \dots, b_k)\} & \text{ if } c \in \Sigma_2 \setminus \Sigma_1 \\ \{(a, b) \in A_{12} : a \in \mathbb{O}_1(a_1, \dots, a_k) \\ & \text{ and } b \in \mathbb{O}_2(b_1, \dots, b_k)\} & \text{ if } c \in \Sigma_1 \cap \Sigma_2 \end{cases}$$

Note that $\mathbb{O}_{12}((a_1, b_1), \dots, (a_k, b_k)) = \emptyset$ if $\mathbb{O}_1(a_1, \dots, a_k) \subseteq D_1$ and $\mathbb{O}_2(a_1, \dots, a_k) \subseteq U_2$ or vice versa.

Facts about strict-product

- + $\mathbb{M}_1 \star \mathbb{M}_2$ is saturated whenever \mathbb{M}_1 and \mathbb{M}_2 are
- $\langle \Sigma_1, \mathbb{M}_1 \rangle \otimes \langle \Sigma_2, \mathbb{M}_2 \rangle = \langle \Sigma_1 \cup \Sigma_2, \mathbb{M}_1 \star \mathbb{M}_2 \rangle$ is the product in all the introduced PNmatrix categories PNmatr, PNmatr^b, SPNmatr and SPNmatr^b.

–
$$\pi_1(x,y)=x$$
 and $\pi_2(x,y)=y$ are strict-morphisms

-
$$\operatorname{Val}(\mathbb{M}_1 * \mathbb{M}_2) = \operatorname{Val}(\mathbb{M}_1^{\Sigma_1 \cup \Sigma_2}) \cap \operatorname{Val}(\mathbb{M}_2^{\Sigma_1 \cup \Sigma_2}).$$

- * If $v \in \operatorname{Val}(\mathbb{M}_1 * \mathbb{M}_2)$ then $(\pi_k \circ v) \in \operatorname{Val}(\mathbb{M}_k^{\Sigma_1 \cup \Sigma_2})$
- * $v_1 \in \operatorname{Val}(\mathbb{M}_1^{\Sigma_1 \cup \Sigma_2}), v_2 \in \operatorname{Val}(\mathbb{M}_2^{\Sigma_1 \cup \Sigma_2}), \text{ and } v_1(\varphi) \in D_1 \text{ iff } v_2(\varphi) \in D_2 \text{ for every} A \in L_{\Sigma_1 \cup \Sigma_2}(P), \text{ then } v_1 * v_2 \in \operatorname{Val}(\mathbb{M}_1 * \mathbb{M}_2) \text{ with } v_1 * v_2(\varphi) = (v_1(\varphi), v_2(\varphi))$

Modular semantics for combined logics by joining calculi

- Product on the semantical side, coproduct of logics
- $\triangleright_{\mathbb{M}_1} \sqcup \triangleright_{\mathbb{M}_2} = \triangleright_{\mathbb{M}_1 \star \mathbb{M}_2}$
- If \mathbb{M}_1 and \mathbb{M}_2 saturated then $\vdash_{\mathbb{M}_1} \sqcup \vdash_{\mathbb{M}_2} = \vdash_{\mathbb{M}_1 \star \mathbb{M}_2}$
- If either \mathbb{M}_1 or \mathbb{M}_2 not saturated it may happen that $\vdash_{\mathbb{M}_1} \sqcup \vdash_{\mathbb{M}_2} \subsetneq \vdash_{\mathbb{M}_1 \star \mathbb{M}_2}$
- In any case, $\vdash_{\mathbb{M}_1} \sqcup \vdash_{\mathbb{M}_2} = \vdash_{\mathbb{M}_1^{\omega} \star \mathbb{M}_2^{\omega}}$

Back to combining AND and OR

Let
$$2_{\wedge}:$$
 $\begin{array}{c|c} \tilde{\wedge} & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}$ $2_{\vee}:$ $\begin{array}{c|c} \tilde{\vee} & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 1 \end{array}$

Back to combining AND and OR

		Ñ				Ñ		
Let	2 _^ :	0			2_{ee} :	0	0	1
		1	0	1		1	1	1

In set \times set:

 $\begin{array}{cccc} \mathbf{2}_{\wedge} \star \mathbf{2}_{\vee} = & \mathbf{2}_{\wedge\vee} \text{ is the } \wedge\vee \text{-fragment of classical Boolean matrix and indeed the rules} \\ \frac{p \wedge q}{p} & \frac{p \wedge q}{q} & \frac{p}{p \wedge q} & \frac{p}{p \vee q} & \frac{q}{p \vee q} & \frac{p \vee q}{p, q} \end{array} \\ \begin{array}{c} \frac{p \vee q}{p, q} & \text{axiomatize} & \triangleright_{\mathbf{2}_{\wedge\vee}}. \end{array} \end{array}$

Back to combining AND and OR

			0			Ñ		
Let	2 _^ :	0	0	0	2_{ee} :	0	0	1
		1	0	1		1	1	1

In set \times set:

In set \times fmla:

 2_{\wedge} is saturated but 2_{\vee} is not. $p \lor q arphi_{2_{\vee}} p$, q but $p \lor q \not\vdash_{2_{\vee}} p$ and $p \lor q \not\vdash_{2_{\vee}} q$

$$\vdash_{\wedge\vee^{\omega}}=\vdash_{2_{\wedge}\star 2_{\vee}^{\omega}}\subsetneq\vdash_{2_{\wedge}\vee} \text{ and } 2_{\wedge\vee}\cong 2_{\wedge}\star 2_{\vee}^{\omega} \text{ where }$$

$$egin{aligned} & 2_{\wedge\vee} = \langle \wp(\mathbb{N}), \cdot_{\#}, \{\mathbb{N}\}
angle ext{ with } \ & X ee_{\#}Y = X \cup Y ext{ and } X \wedge_{\#}Y = egin{cases} \mathbb{N} & ext{if } X = Y = \mathbb{N} \ & \wp(\mathbb{N}) & ext{otherwise} \end{aligned}$$

Fact:

Classical logic can be axiomatized joining axiomatizations for each of fragments with a single connective in set \times set but not in set \times fmla.

Bibliography

Non-referenced facts and examples were taken from:

- Characterizing finite-valuedness
 Fuzzy Sets and Systems (Caleiro & M. & Rivieccio 2018)
- Combining fragments of classical logic: When are interaction principles needed? Soft Computing (Caleiro & M. & Marcos 2018)
- Axiomatizing non-deterministic many-valued generalized CRs Synthese (Caleiro & M. 2019)
- Analytic calculi for monadic PNmatrices
 WoLLIC (Caleiro & M. 2019)
- On axioms and rexpansions Book chapter, OCL dedicated to Arnon Avron, (Caleiro & M. 2020)
- Modular many-valued semantics for combined logics Submitted/preprint@Arxiv (Caleiro, & M. 2021)
- Computational properties of partial non-deterministic logical matrices LFCS (Caleiro, Filipe & M. 2021)
- Comparing logics induced by partial non-deterministic semantics In preparation (Caleiro, Filipe & M.)